Discretization approach for large-scale sediment modeling: calibration strategies based on hydro-sediment variability at a range of spatial scales

Pub Date : 2023-04-14 DOI:10.1590/2318-0331.282320220088
R. B. Rossoni, F. Fan
{"title":"Discretization approach for large-scale sediment modeling: calibration strategies based on hydro-sediment variability at a range of spatial scales","authors":"R. B. Rossoni, F. Fan","doi":"10.1590/2318-0331.282320220088","DOIUrl":null,"url":null,"abstract":"ABSTRACT The lack of observed data and calibration strategies, scale variability, and difficulties in representing heterogeneity of sediment-processes contribute to the usual challenges in achieving satisfactory results in hydro-sedimentological modeling, particularly when using the MUSLE equation for large-scale applications. As a consequence, we investigated five major topics: (1) a sediment-process-based parameterization technique (Hydro-sedimentological Response Unit map - HRUSed); (2) the quality of hydrological modeling with different process-focused parameterizations; (3) a calibration strategy based on the sediment discretization approach for hydro-sedimentological modeling; (4) the use of suspended sediment concentration (SSC) versus suspended sediment discharge (SSD) data for calibration; and (5) trade-offs between increasing the spatial resolution of a large-scale model and using the proposed HRUSed discretization. The current study demonstrated (1) the HRUSed map for South America and (2) a similar performance of large-scale hydrological modeling using a hydrological or hydro-sedimentological discretization approach. (3) The HRUSed discretization approach produced better hydro-sedimentological modeling results. (4) We improved the model’s performance for HRUSed (SSC and SSD results) and for HRU (Hydrological Response Unit map) only for SSD results. (5) Only more detailed spatial discretization has failed to improve process representation. However, increased spatial discretization with a process-parameterization approach focused on hydro-sedimentological dynamics improved model performance.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2318-0331.282320220088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The lack of observed data and calibration strategies, scale variability, and difficulties in representing heterogeneity of sediment-processes contribute to the usual challenges in achieving satisfactory results in hydro-sedimentological modeling, particularly when using the MUSLE equation for large-scale applications. As a consequence, we investigated five major topics: (1) a sediment-process-based parameterization technique (Hydro-sedimentological Response Unit map - HRUSed); (2) the quality of hydrological modeling with different process-focused parameterizations; (3) a calibration strategy based on the sediment discretization approach for hydro-sedimentological modeling; (4) the use of suspended sediment concentration (SSC) versus suspended sediment discharge (SSD) data for calibration; and (5) trade-offs between increasing the spatial resolution of a large-scale model and using the proposed HRUSed discretization. The current study demonstrated (1) the HRUSed map for South America and (2) a similar performance of large-scale hydrological modeling using a hydrological or hydro-sedimentological discretization approach. (3) The HRUSed discretization approach produced better hydro-sedimentological modeling results. (4) We improved the model’s performance for HRUSed (SSC and SSD results) and for HRU (Hydrological Response Unit map) only for SSD results. (5) Only more detailed spatial discretization has failed to improve process representation. However, increased spatial discretization with a process-parameterization approach focused on hydro-sedimentological dynamics improved model performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
大尺度泥沙模型的离散化方法:基于空间尺度水沙变率的校准策略
观测数据和校准策略的缺乏、尺度的可变性以及表征沉积过程非均质性的困难,是在水文沉积学建模中获得令人满意结果的常见挑战,特别是在大规模应用MUSLE方程时。因此,我们研究了五个主要主题:(1)基于沉积过程的参数化技术(水文-沉积响应单元图- HRUSed);(2)不同过程参数化的水文模拟质量;(3)基于泥沙离散化方法的水文-沉积模型定标策略;(4)利用悬沙浓度(SSC)和悬沙流量(SSD)数据进行校准;(5)在提高大尺度模型的空间分辨率和使用所提出的HRUSed离散化之间进行权衡。目前的研究证明了(1)南美洲的HRUSed地图和(2)使用水文或水文沉积离散化方法进行大尺度水文建模的类似性能。(3) HRUSed离散化方法获得了较好的水文-沉积模拟结果。(4)我们改进了HRUSed (SSC和SSD结果)和HRU(水文响应单元图)仅针对SSD结果的模型性能。(5)只有更详细的空间离散化不能改善过程表征。然而,基于水文-沉积动力学过程参数化方法的空间离散化提高了模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1