Affective Robot Movement Generation Using CycleGANs

Michael Suguitan, Mason Bretan, Guy Hoffman
{"title":"Affective Robot Movement Generation Using CycleGANs","authors":"Michael Suguitan, Mason Bretan, Guy Hoffman","doi":"10.1109/HRI.2019.8673281","DOIUrl":null,"url":null,"abstract":"Social robots use gestures to express internal and affective states, but their interactive capabilities are hindered by relying on preprogrammed or hand-animated behaviors, which can be repetitive and predictable. We propose a method for automatically synthesizing affective robot movements given manually-generated examples. Our approach is based on techniques adapted from deep learning, specifically generative adversarial neural networks (GANs).","PeriodicalId":6600,"journal":{"name":"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)","volume":"02 1","pages":"534-535"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HRI.2019.8673281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Social robots use gestures to express internal and affective states, but their interactive capabilities are hindered by relying on preprogrammed or hand-animated behaviors, which can be repetitive and predictable. We propose a method for automatically synthesizing affective robot movements given manually-generated examples. Our approach is based on techniques adapted from deep learning, specifically generative adversarial neural networks (GANs).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用CycleGANs生成情感机器人运动
社交机器人使用手势来表达内部和情感状态,但它们的互动能力受到依赖于预编程或手动动画行为的阻碍,这些行为可能是重复的和可预测的。我们提出了一种方法来自动合成情感机器人运动给定的人工生成的例子。我们的方法是基于深度学习的技术,特别是生成对抗神经网络(gan)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Arpi, a Social Robot for Children with Epilepsy AMIGUS: A Robot Companion for Students (Video Abstract) MAPPO: The Assistance Pet for Oncological Children (Video Abstract) ACM/IEEE International Conference on Human-Robot Interaction, HRI 2022, Sapporo, Hokkaido, Japan, March 7 - 10, 2022 Leveraging Non-Experts and Formal Methods to Automatically Correct Robot Failures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1