Computation of Aeroacoustics and Fluid Flow Problems Using a Novel Dispersion Relation Preserving Scheme

IF 1.3 3区 物理与天体物理 Q3 ACOUSTICS Journal of Theoretical and Computational Acoustics Pub Date : 2020-03-01 DOI:10.1142/S2591728518500639
B. Mahato, G. Naveen, Y. Bhumkar
{"title":"Computation of Aeroacoustics and Fluid Flow Problems Using a Novel Dispersion Relation Preserving Scheme","authors":"B. Mahato, G. Naveen, Y. Bhumkar","doi":"10.1142/S2591728518500639","DOIUrl":null,"url":null,"abstract":"A new spectrally optimized physical dispersion relation preserving scheme has been introduced to solve computational acoustics and aeroacoustics problems, accurately. The derived fourth-order accurate scheme has significant spectral resolution and physical dispersion relation preserving (DRP) nature. The scheme displays neutral stability at high CFL numbers. The developed scheme has an ability to add numerical diffusion as and when required to attenuate spurious waves present in the computed solutions. These features make the proposed scheme suitable for solving computational aeroacoustic problems. The scheme has been validated by comparing solutions of model computational acoustic problems with the available analytical solutions. Scheme has also been tested to solve the incompressible flow field around a circular cylinder executing rotary oscillations. Ability of the scheme to perform direct simulation of the computational aeroacoustic problems has been shown by computing acoustic field triggered by a laminar flow past a stationary circular cylinder. Excellent match has been observed between the present computed results and the available results in the literature which justifies applicability of the present DRP scheme to solve complex flow and aeroacoustic problems.","PeriodicalId":55976,"journal":{"name":"Journal of Theoretical and Computational Acoustics","volume":"38 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Computational Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S2591728518500639","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 8

Abstract

A new spectrally optimized physical dispersion relation preserving scheme has been introduced to solve computational acoustics and aeroacoustics problems, accurately. The derived fourth-order accurate scheme has significant spectral resolution and physical dispersion relation preserving (DRP) nature. The scheme displays neutral stability at high CFL numbers. The developed scheme has an ability to add numerical diffusion as and when required to attenuate spurious waves present in the computed solutions. These features make the proposed scheme suitable for solving computational aeroacoustic problems. The scheme has been validated by comparing solutions of model computational acoustic problems with the available analytical solutions. Scheme has also been tested to solve the incompressible flow field around a circular cylinder executing rotary oscillations. Ability of the scheme to perform direct simulation of the computational aeroacoustic problems has been shown by computing acoustic field triggered by a laminar flow past a stationary circular cylinder. Excellent match has been observed between the present computed results and the available results in the literature which justifies applicability of the present DRP scheme to solve complex flow and aeroacoustic problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用一种新的色散关系保持格式计算气动声学和流体流动问题
提出了一种新的频谱优化物理色散关系保持方案,可以准确地解决计算声学和气动声学问题。所导出的四阶精确格式具有显著的光谱分辨率和物理色散关系保持特性。该方案在高CFL数下具有中性稳定性。所开发的方案能够在需要时添加数值扩散以衰减计算解中存在的杂散波。这些特点使该方案适用于求解计算气动声学问题。通过将模型计算声学问题的解与现有的解析解进行比较,验证了该方案的有效性。该方案还经过了测试,以解决围绕执行旋转振荡的圆柱的不可压缩流场。通过计算层流经过静止圆柱所引发的声场,证明了该方案直接模拟计算气动声学问题的能力。本文的计算结果与文献中已有的结果吻合良好,证明了本文的DRP方案在解决复杂的流动和气动声学问题上的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Theoretical and Computational Acoustics
Journal of Theoretical and Computational Acoustics Computer Science-Computer Science Applications
CiteScore
2.90
自引率
42.10%
发文量
26
期刊介绍: The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics. Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations.
期刊最新文献
Further development of rotating beamforming techniques using asynchronous measurements Virtual rotating array for near-field localization of rotating sound sources Parameter Identification of a Large-scale Vibroacoustic Finite Element Model with a One-dimensional Convolutional Neural Network Update on the Ivory-billed Woodpecker (Campephilus principalis) Scandal For Special Issue on Inverse Problems in Acoustics Coherent noise denoising in beamforming based on non-convex robust principal component analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1