Seeding a Message to Harvest Reach. Predicting and Optimizing the Spread of Electronic Word-of-Mouth

Ralf van der Lans, G. V. van Bruggen, J. Eliashberg, B. Wierenga
{"title":"Seeding a Message to Harvest Reach. Predicting and Optimizing the Spread of Electronic Word-of-Mouth","authors":"Ralf van der Lans, G. V. van Bruggen, J. Eliashberg, B. Wierenga","doi":"10.2478/GFKMIR-2014-0039","DOIUrl":null,"url":null,"abstract":"Abstract In a viral marketing campaign organizations stimulate customers to forward marketing messages to their contacts. To optimize a viral campaign it is necessary to predict how many customers will be reached, how this reach evolves, and how it depends on promotion activities. a new Viral Branching model can provide these results. It is based on insights from epidemiology and the spread of viruses and was adapted to a marketing context and an electronic environment. The model is applied to an actual viral marketing campaign in which over 200,000 customers participated during a six-week period. The results show that the model quickly predicts the actual reach of the campaign and serves as a valuable tool to support marketing decisions related to online campaigns","PeriodicalId":30678,"journal":{"name":"GfK Marketing Intelligence Review","volume":"21 1","pages":"32 - 41"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GfK Marketing Intelligence Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/GFKMIR-2014-0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In a viral marketing campaign organizations stimulate customers to forward marketing messages to their contacts. To optimize a viral campaign it is necessary to predict how many customers will be reached, how this reach evolves, and how it depends on promotion activities. a new Viral Branching model can provide these results. It is based on insights from epidemiology and the spread of viruses and was adapted to a marketing context and an electronic environment. The model is applied to an actual viral marketing campaign in which over 200,000 customers participated during a six-week period. The results show that the model quickly predicts the actual reach of the campaign and serves as a valuable tool to support marketing decisions related to online campaigns
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
向Harvest Reach发送消息预测和优化电子口碑的传播
在病毒式营销活动中,组织鼓励客户将营销信息转发给他们的联系人。为了优化病毒式营销,有必要预测将接触到多少客户,这种接触如何演变,以及它如何依赖于促销活动。一种新的病毒分支模型可以提供这些结果。它基于流行病学和病毒传播的见解,并适应了营销背景和电子环境。该模型被应用到一个实际的病毒式营销活动中,在6周的时间里,有超过20万名客户参与了该活动。结果表明,该模型可以快速预测活动的实际影响范围,并可作为支持与在线活动相关的营销决策的有价值的工具
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
18 weeks
期刊最新文献
Recreating Intimacy With Connected Consumers Seeding on Moving Ground: How Understanding Network Instability Can Improve Message Dissemination Business Model Innovation: How to Create Value in a Digital World From Corporate Philanthropy to Creating Shared Value: Big Pharma’s New Business Models in Developing Markets Branding Raw Material to Improve Human Rights: Intel’s Ban on Conflict Minerals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1