Z. Wang, Xi Xiao, Guangwu Hu, Yao Yao, Dianyan Zhang, Zhendong Peng, Qing Li, Shutao Xia
{"title":"Non-local Self-attention Structure for Function Approximation in Deep Reinforcement Learning","authors":"Z. Wang, Xi Xiao, Guangwu Hu, Yao Yao, Dianyan Zhang, Zhendong Peng, Qing Li, Shutao Xia","doi":"10.1109/ICASSP.2019.8682832","DOIUrl":null,"url":null,"abstract":"Reinforcement learning is a framework to make sequential decisions. The combination with deep neural networks further improves the ability of this framework. Convolutional nerual networks make it possible to make sequential decisions based on raw pixels information directly and make reinforcement learning achieve satisfying performances in series of tasks. However, convolutional neural networks still have own limitations in representing geometric patterns and long-term dependencies that occur consistently in state inputs. To tackle with the limitation, we propose the self-attention architecture to augment the original network. It provides a better balance between ability to model long-range dependencies and computational efficiency. Experiments on Atari games illustrate that self-attention structure is significantly effective for function approximation in deep reinforcement learning.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"146 1","pages":"3042-3046"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Reinforcement learning is a framework to make sequential decisions. The combination with deep neural networks further improves the ability of this framework. Convolutional nerual networks make it possible to make sequential decisions based on raw pixels information directly and make reinforcement learning achieve satisfying performances in series of tasks. However, convolutional neural networks still have own limitations in representing geometric patterns and long-term dependencies that occur consistently in state inputs. To tackle with the limitation, we propose the self-attention architecture to augment the original network. It provides a better balance between ability to model long-range dependencies and computational efficiency. Experiments on Atari games illustrate that self-attention structure is significantly effective for function approximation in deep reinforcement learning.