J. Ospina, A. Fandiño, S. Hernández, L. Uriza, Diego Aragonéz, I. Mondragón, D. Durán, J. Magness
{"title":" 3D-printed pediatric temporal bone models for surgical training: a patient-specific and low-cost alternative","authors":"J. Ospina, A. Fandiño, S. Hernández, L. Uriza, Diego Aragonéz, I. Mondragón, D. Durán, J. Magness","doi":"10.2217/3DP-2019-0011","DOIUrl":null,"url":null,"abstract":"Aim: To determine the usefulness of low-cost 3D-printed pediatric temporal bone models and to define if they could be used as a tool for large-scale surgical training based on their affordability. Materials & methods: Prototypes of a pediatric temporal bone were printed using fused deposition modeling 3D printing technique. The prototypes were drilled. The surgical simulation experience was registered by means of a Likert scale questionnaire. Results: The prototypes adequately simulated a cadaveric temporal bone. The costs associated with production were low compared with other commercial models making it a cost-effective alternative for a temporal bone laboratory. Conclusion: Printed temporal bones created by means of fused deposition modeling are useful for surgical simulation and training in otolaryngology, and it is possible to achieve detailed low-cost models.","PeriodicalId":73578,"journal":{"name":"Journal of 3D printing in medicine","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of 3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/3DP-2019-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Aim: To determine the usefulness of low-cost 3D-printed pediatric temporal bone models and to define if they could be used as a tool for large-scale surgical training based on their affordability. Materials & methods: Prototypes of a pediatric temporal bone were printed using fused deposition modeling 3D printing technique. The prototypes were drilled. The surgical simulation experience was registered by means of a Likert scale questionnaire. Results: The prototypes adequately simulated a cadaveric temporal bone. The costs associated with production were low compared with other commercial models making it a cost-effective alternative for a temporal bone laboratory. Conclusion: Printed temporal bones created by means of fused deposition modeling are useful for surgical simulation and training in otolaryngology, and it is possible to achieve detailed low-cost models.