Depth-based Gait Authentication for Practical Sensor Settings

Taro Ikeda, Ikuhisa Mitsugami, Y. Yagi
{"title":"Depth-based Gait Authentication for Practical Sensor Settings","authors":"Taro Ikeda, Ikuhisa Mitsugami, Y. Yagi","doi":"10.2197/ipsjtcva.7.94","DOIUrl":null,"url":null,"abstract":"This paper investigates performances of silhouette-based and depth-based gait authentication considering practical sensor settings where sensors are located in an environments afterwards and usually have to be located quite near to people. To realize fair comparison between different sensors and methods, we construct full-body volume of walking people by a multi-camera environment so as to reconstruct virtual silhouette and depth images at arbitrary sensor positions. In addition, we also investigate performances when we have to authenticate between frontal and rear views. Experimental results confirm that the depth-based methods outperform the silhouette-based ones in the realistic situations. We also confirm that by introducing Depth-based Gait Feature, we can authenticate between the frontal and rear views.","PeriodicalId":38957,"journal":{"name":"IPSJ Transactions on Computer Vision and Applications","volume":"17 1","pages":"94-98"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Computer Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtcva.7.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3

Abstract

This paper investigates performances of silhouette-based and depth-based gait authentication considering practical sensor settings where sensors are located in an environments afterwards and usually have to be located quite near to people. To realize fair comparison between different sensors and methods, we construct full-body volume of walking people by a multi-camera environment so as to reconstruct virtual silhouette and depth images at arbitrary sensor positions. In addition, we also investigate performances when we have to authenticate between frontal and rear views. Experimental results confirm that the depth-based methods outperform the silhouette-based ones in the realistic situations. We also confirm that by introducing Depth-based Gait Feature, we can authenticate between the frontal and rear views.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度的实际传感器设置步态认证
本文研究了基于轮廓和基于深度的步态认证的性能,考虑了实际传感器设置,其中传感器位于之后的环境中,通常必须位于离人很近的地方。为了实现不同传感器和方法之间的公平比较,我们在多相机环境下构建行走人的全身体积,从而在任意传感器位置重建虚拟轮廓和深度图像。此外,我们也调查性能,当我们必须验证正面和后视图之间。实验结果表明,在真实情况下,基于深度的方法优于基于轮廓的方法。我们还证实,通过引入基于深度的步态特征,我们可以在前视图和后视图之间进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IPSJ Transactions on Computer Vision and Applications
IPSJ Transactions on Computer Vision and Applications Computer Science-Computer Vision and Pattern Recognition
自引率
0.00%
发文量
0
期刊最新文献
3D human pose estimation model using location-maps for distorted and disconnected images by a wearable omnidirectional camera Application of evolutionary and swarm optimization in computer vision: a literature survey Pseudo-labelling-aided semantic segmentation on sparsely annotated 3D point clouds Phase disambiguation using spatio-temporally modulated illumination in depth sensing Deep learning-based strategies for the detection and tracking of drones using several cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1