Clustering Mashups by Integrating Structural and Semantic Similarities Using Fuzzy AHP

IF 0.8 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Web Services Research Pub Date : 2021-01-01 DOI:10.4018/IJWSR.2021010103
Weifeng Pan, Xinxin Xu, Ming Hua, Carl K. Chang
{"title":"Clustering Mashups by Integrating Structural and Semantic Similarities Using Fuzzy AHP","authors":"Weifeng Pan, Xinxin Xu, Ming Hua, Carl K. Chang","doi":"10.4018/IJWSR.2021010103","DOIUrl":null,"url":null,"abstract":"Mashup technology has become a promising way to develop and deliver applications on the web. Automatically organizing Mashups into functionally similar clusters helps improve the performance of Mashup discovery. Although there are many approaches aiming to cluster Mashups, they solely focus on utilizing semantic similarities to guide the Mashup clustering process and are unable to utilize both the structural and semantic information in Mashup profiles. In this paper, a novel approach to cluster Mashups into groups is proposed, which integrates structural similarity and semantic similarity using fuzzy AHP (fuzzy analytic hierarchy process). The structural similarity is computed from usage histories between Mashups and Web APIs using SimRank algorithm. The semantic similarity is computed from the descriptions and tags of Mashups using LDA (latent dirichlet allocation). A clustering algorithm based on the genetic algorithm is employed to cluster Mashups. Comprehensive experiments are performed on a real data set collected from ProgrammableWeb. The results show the effectiveness of the approach when compared with two kinds of conventional approaches.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"34 1","pages":"34-57"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/IJWSR.2021010103","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 9

Abstract

Mashup technology has become a promising way to develop and deliver applications on the web. Automatically organizing Mashups into functionally similar clusters helps improve the performance of Mashup discovery. Although there are many approaches aiming to cluster Mashups, they solely focus on utilizing semantic similarities to guide the Mashup clustering process and are unable to utilize both the structural and semantic information in Mashup profiles. In this paper, a novel approach to cluster Mashups into groups is proposed, which integrates structural similarity and semantic similarity using fuzzy AHP (fuzzy analytic hierarchy process). The structural similarity is computed from usage histories between Mashups and Web APIs using SimRank algorithm. The semantic similarity is computed from the descriptions and tags of Mashups using LDA (latent dirichlet allocation). A clustering algorithm based on the genetic algorithm is employed to cluster Mashups. Comprehensive experiments are performed on a real data set collected from ProgrammableWeb. The results show the effectiveness of the approach when compared with two kinds of conventional approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用模糊层次分析法集成结构和语义相似性的聚类mashup
Mashup技术已经成为在web上开发和交付应用程序的一种很有前途的方式。自动将Mashup组织成功能相似的集群有助于提高Mashup发现的性能。尽管有很多方法都是针对Mashup集群的,但它们都只关注于利用语义相似性来指导Mashup集群过程,而无法同时利用Mashup配置文件中的结构和语义信息。本文提出了一种利用模糊层次分析法将结构相似度和语义相似度相结合的聚类方法。结构相似性是使用simmrank算法根据mashup和Web api之间的使用历史计算的。使用LDA (latent dirichlet allocation)从mashup的描述和标记计算语义相似度。采用基于遗传算法的聚类算法对mashup进行聚类。在programableweb上收集的一个真实数据集上进行了全面的实验。结果表明,该方法与两种传统方法相比是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Web Services Research
International Journal of Web Services Research 工程技术-计算机:软件工程
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.
期刊最新文献
A Quasi-Newton Matrix Factorization-Based Model for Recommendation A Service Recommendation Algorithm Based on Self-Attention Mechanism and DeepFM Secure Cloud Storage and Retrieval of Personal Health Data From Smart Wearable Devices With Privacy-Preserving Techniques User Interaction Within Online Innovation Communities Research on a New Reconstruction Technology and Evaluation Method for 3D Digital Core Pore Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1