MinCAR-Classifier for classifying lung cancer gene expression dataset

Wael Zakaria, Y. Kotb, F. Ghaleb
{"title":"MinCAR-Classifier for classifying lung cancer gene expression dataset","authors":"Wael Zakaria, Y. Kotb, F. Ghaleb","doi":"10.1109/INTELCIS.2015.7397211","DOIUrl":null,"url":null,"abstract":"DNA microarray technology assists researchers to learn more about different diseases especially the study of the cancer diseases. Using the microarray technology, it will be possible for the researchers to further classify the types of cancer on the basis of the patterns of gene activity (gene expression) in the tumor cells. This will tremendously help the pharmaceutical community to develop more effective drugs as the treatment strategies will be targeted directly to the specific type of cancer. The classification technique is one of the important data mining techniques that is used for classifying the DNA microarray datasets. The aim of this paper is to build an accurate classifier framework called MinCAR-Classifier that mines all minimal high confident class association rules, MinCAR, from cancer microarray datasets. Based on lung cancer microarray dataset, the comparative studies show that our proposed MinCAR-Classifier framework is more accurate than other well-known classifier frameworks.","PeriodicalId":6478,"journal":{"name":"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)","volume":"26 1","pages":"143-148"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELCIS.2015.7397211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

DNA microarray technology assists researchers to learn more about different diseases especially the study of the cancer diseases. Using the microarray technology, it will be possible for the researchers to further classify the types of cancer on the basis of the patterns of gene activity (gene expression) in the tumor cells. This will tremendously help the pharmaceutical community to develop more effective drugs as the treatment strategies will be targeted directly to the specific type of cancer. The classification technique is one of the important data mining techniques that is used for classifying the DNA microarray datasets. The aim of this paper is to build an accurate classifier framework called MinCAR-Classifier that mines all minimal high confident class association rules, MinCAR, from cancer microarray datasets. Based on lung cancer microarray dataset, the comparative studies show that our proposed MinCAR-Classifier framework is more accurate than other well-known classifier frameworks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肺癌基因表达数据集的mincar分类器
DNA微阵列技术有助于研究人员更多地了解不同的疾病,特别是癌症疾病的研究。利用微阵列技术,研究人员将有可能根据肿瘤细胞中基因活性(基因表达)的模式进一步分类癌症的类型。这将极大地帮助医药界开发更有效的药物,因为治疗策略将直接针对特定类型的癌症。分类技术是用于DNA微阵列数据集分类的重要数据挖掘技术之一。本文的目的是建立一个精确的分类器框架,称为MinCAR- classifier,从癌症微阵列数据集中挖掘所有最小高置信度类关联规则MinCAR。基于肺癌微阵列数据集的对比研究表明,我们提出的MinCAR-Classifier框架比其他已知的分类器框架更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the use of probabilistic model-checking for the verification of prognostics applications Prospective, knowledge based clinical risk analysis: The OPT-model Partial deduction in predicate calculus as a tool for artificial intelligence problem complexity decreasing XML summarization: A survey Finding the pin in the haystack: A Bot Traceback service for public clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1