An Improved Multi-Objective Genetic Algorithm Based On Pareto Front and Fixed Point Theory

Jingjun Zhang, Yanmin Shang, Ruizhen Gao, Yuzhen Dong
{"title":"An Improved Multi-Objective Genetic Algorithm Based On Pareto Front and Fixed Point Theory","authors":"Jingjun Zhang, Yanmin Shang, Ruizhen Gao, Yuzhen Dong","doi":"10.1109/IWISA.2009.5072719","DOIUrl":null,"url":null,"abstract":"For multi-objective optimization problems, an improved multi-objective genetic algorithm based on Pareto Front and Fixed Point Theory is proposed in this paper. In this Algorithm, the fixed point theory is introduced to multi-objective optimization questions and K1 triangulation is carried on to solutions for the weighting function constructed by all subfunctions, so the optimal problems are transferred to fixed point problems. The non-dominated-set is constructed by the method of exclusion. The experimental results show that this improved genetic algorithm convergent faster and is able to achieve a broader distribution of the Pareto optimal solution. Keywords— multi-objective optimization; Pareto Front; nondominated set; genetic algorithm; fixed point; K1 triangulation","PeriodicalId":6327,"journal":{"name":"2009 International Workshop on Intelligent Systems and Applications","volume":"119 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWISA.2009.5072719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For multi-objective optimization problems, an improved multi-objective genetic algorithm based on Pareto Front and Fixed Point Theory is proposed in this paper. In this Algorithm, the fixed point theory is introduced to multi-objective optimization questions and K1 triangulation is carried on to solutions for the weighting function constructed by all subfunctions, so the optimal problems are transferred to fixed point problems. The non-dominated-set is constructed by the method of exclusion. The experimental results show that this improved genetic algorithm convergent faster and is able to achieve a broader distribution of the Pareto optimal solution. Keywords— multi-objective optimization; Pareto Front; nondominated set; genetic algorithm; fixed point; K1 triangulation
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Pareto前沿和不动点理论的改进多目标遗传算法
针对多目标优化问题,提出了一种基于Pareto前沿和不动点理论的改进多目标遗传算法。该算法将不动点理论引入到多目标优化问题中,并对各子函数构造的权函数的解进行K1三角剖分,将最优问题转化为不动点问题。用排他法构造非支配集。实验结果表明,改进后的遗传算法收敛速度更快,能够得到分布范围更广的Pareto最优解。关键词:多目标优化;帕累托前沿;nondominated设置;遗传算法;不动点;K1三角
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Systems and Applications: Select Proceedings of ICISA 2022 Selecting Accurate Classifier Models for a MERS-CoV Dataset A Method of Same Frequency Interference Elimination Based on Adaptive Notch Filter Research on Work-in-Progress Control System of Integrating PI and SPC Study on A Novel Fuzzy PLL and Its Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1