Near Optimal LP Rounding Algorithm for CorrelationClustering on Complete and Complete k-partite Graphs

Shuchi Chawla, K. Makarychev, T. Schramm, G. Yaroslavtsev
{"title":"Near Optimal LP Rounding Algorithm for CorrelationClustering on Complete and Complete k-partite Graphs","authors":"Shuchi Chawla, K. Makarychev, T. Schramm, G. Yaroslavtsev","doi":"10.1145/2746539.2746604","DOIUrl":null,"url":null,"abstract":"We give new rounding schemes for the standard linear programming relaxation of the correlation clustering problem, achieving approximation factors almost matching the integrality gaps: For complete graphs our approximation is 2.06 - ε, which almost matches the previously known integrality gap of 2. For complete k-partite graphs our approximation is 3. We also show a matching integrality gap. For complete graphs with edge weights satisfying triangle inequalities and probability constraints, our approximation is 1.5, and we show an integrality gap of 1.2. Our results improve a long line of work on approximation algorithms for correlation clustering in complete graphs, previously culminating in a ratio of 2.5 for the complete case by Ailon, Charikar and Newman (JACM'08). In the weighted complete case satisfying triangle inequalities and probability constraints, the same authors give a 2-approximation; for the bipartite case, Ailon, Avigdor-Elgrabli, Liberty and van Zuylen give a 4-approximation (SICOMP'12).","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"2016 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

Abstract

We give new rounding schemes for the standard linear programming relaxation of the correlation clustering problem, achieving approximation factors almost matching the integrality gaps: For complete graphs our approximation is 2.06 - ε, which almost matches the previously known integrality gap of 2. For complete k-partite graphs our approximation is 3. We also show a matching integrality gap. For complete graphs with edge weights satisfying triangle inequalities and probability constraints, our approximation is 1.5, and we show an integrality gap of 1.2. Our results improve a long line of work on approximation algorithms for correlation clustering in complete graphs, previously culminating in a ratio of 2.5 for the complete case by Ailon, Charikar and Newman (JACM'08). In the weighted complete case satisfying triangle inequalities and probability constraints, the same authors give a 2-approximation; for the bipartite case, Ailon, Avigdor-Elgrabli, Liberty and van Zuylen give a 4-approximation (SICOMP'12).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
完备和完备k部图相关聚类的近最优LP舍入算法
对于相关聚类问题的标准线性规划松弛,我们给出了新的舍入方案,实现了近似因子几乎与完整性间隙匹配:对于完全图,我们的近似因子为2.06 - ε,几乎与之前已知的2的完整性间隙匹配。对于完全k部图,我们的近似值是3。我们还展示了一个匹配的完整性差距。对于边权满足三角形不等式和概率约束的完全图,我们的近似值为1.5,并且我们显示了1.2的完整性间隙。我们的结果改进了在完全图中相关聚类的近似算法方面的一长串工作,之前由Ailon, Charikar和Newman (JACM'08)在完全情况下达到了2.5的比率。在满足三角形不等式和概率约束的加权完全情况下,同样的作者给出了一个2逼近;对于两部分的情况,Ailon, Avigdor-Elgrabli, Liberty和van Zuylen给出了一个4近似(SICOMP'12)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Parallel Complexity Graphs and Memory-Hard Functions Lp Row Sampling by Lewis Weights Approximate Distance Oracles with Improved Bounds Proceedings of the forty-seventh annual ACM symposium on Theory of Computing Online Submodular Welfare Maximization: Greedy Beats 1/2 in Random Order
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1