Post-compression of femtosecond laser pulses using self-phase modulation: from kilowatts to petawatts in 40 years

IF 0.9 4区 工程技术 Q3 Engineering Quantum Electronics Pub Date : 2022-03-01 DOI:10.1070/qel18001
E. Khazanov
{"title":"Post-compression of femtosecond laser pulses using self-phase modulation: from kilowatts to petawatts in 40 years","authors":"E. Khazanov","doi":"10.1070/qel18001","DOIUrl":null,"url":null,"abstract":"The pulse duration at the output of femtosecond lasers is usually close to the Fourier limit, and can be shortened by increasing the spectral width. To this end, use is made of self-phase modulation when a pulse propagates in a medium with cubic nonlinearity. Then, the pulse with a chirp (frequency dependence of the spectrum phase) is compressed due to a linear dispersion element, which introduces a chirp of the same modulus, but opposite in sign. This pulse post-compression, known since the 1960s, has been widely used and is being developed up to the present for pulses with energies from fractions of a nJ to tens of J. The review is devoted to the theoretical foundations of this method, problems of energy scaling, and a discussion of the results of more than 150 experimental studies.","PeriodicalId":20775,"journal":{"name":"Quantum Electronics","volume":"6 1","pages":"208 - 226"},"PeriodicalIF":0.9000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1070/qel18001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4

Abstract

The pulse duration at the output of femtosecond lasers is usually close to the Fourier limit, and can be shortened by increasing the spectral width. To this end, use is made of self-phase modulation when a pulse propagates in a medium with cubic nonlinearity. Then, the pulse with a chirp (frequency dependence of the spectrum phase) is compressed due to a linear dispersion element, which introduces a chirp of the same modulus, but opposite in sign. This pulse post-compression, known since the 1960s, has been widely used and is being developed up to the present for pulses with energies from fractions of a nJ to tens of J. The review is devoted to the theoretical foundations of this method, problems of energy scaling, and a discussion of the results of more than 150 experimental studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自相位调制的飞秒激光脉冲后压缩:40年内从千瓦到拍瓦
飞秒激光器输出的脉冲持续时间通常接近傅立叶极限,并且可以通过增加光谱宽度来缩短。为此,当脉冲在具有三次非线性的介质中传播时,使用自相位调制。然后,由于线性色散元件,具有啁啾(频谱相位的频率依赖性)的脉冲被压缩,这引入了相同模量的啁啾,但符号相反。自20世纪60年代以来,这种脉冲后压缩已被广泛使用,并一直发展到现在,用于能量从nJ到几十j的脉冲。这篇综述致力于这种方法的理论基础,能量缩放问题,并讨论了150多个实验研究的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Electronics
Quantum Electronics 工程技术-工程:电子与电气
CiteScore
3.00
自引率
11.10%
发文量
95
审稿时长
3-6 weeks
期刊介绍: Quantum Electronics covers the following principal headings Letters Lasers Active Media Interaction of Laser Radiation with Matter Laser Plasma Nonlinear Optical Phenomena Nanotechnologies Quantum Electronic Devices Optical Processing of Information Fiber and Integrated Optics Laser Applications in Technology and Metrology, Biology and Medicine.
期刊最新文献
CW optical parametric oscillator for the mid-IR range Interaction of blackbody radiation with rubidium and caesium atoms in small-angular-momentum Rydberg states Towards an optical time scale at VNIIFTRI Prospects for anisotropic superfluidity in a Fermi gas of dysprosium Characteristics of a heterodyne laser interferometer laboratory model for the development of a space gravimetry project
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1