Cong-hui Liu, R. Thomas, T. Sun, J. Donoghue, Xun Zhang, T. Burnett, J. Quinta da Fonseca, M. Preuss
{"title":"Multi-Dimensional Study of the Effect of Early Slip Activity on Fatigue Crack Initiation in a Near-α Titanium Alloy","authors":"Cong-hui Liu, R. Thomas, T. Sun, J. Donoghue, Xun Zhang, T. Burnett, J. Quinta da Fonseca, M. Preuss","doi":"10.2139/ssrn.3860382","DOIUrl":null,"url":null,"abstract":"During service of gas turbine engines, high cycle fatigue of titanium is a leading cause of component failure highlighting the need for better understanding of the crack initiation mechanism to predict initiation sites. In this study, the relationship between plastic slip activity and fatigue crack initiation was investigated in a near-α titanium alloy using cyclic four-point bending at up to 90% of the proof stress, with the finding from surface characterization that plasticity at such low stress levels was dominated by the basal slip and two types of cracking were seen parallel to basal slip traces. Detailed 3D analysis of both crack types highlighted out-of-plane Burgers vector activity for the observed basal slip associated with crack initiation, consistent with the classic surface roughening mechanism. The transgranular crack initiation was accompanied by the formation of crystallographic facet which was identified to be 6° away from the basal plane due to additional prismatic slip activation during multi-step crack formation. The intergranular crack facet along the boundary between primary α grain pairs, which have their c-axes aligned nearly parallel to each other but with mis-aligned prismatic planes, was formed by an easy cleavage in one step along the basal plane. Statistical evaluation demonstrated that grains combining a moderately high Schmid factor for basal slip, high resolved tensile stress along the c-axis and the Burgers vector being orientated strongly out-of-surface plane favoured crack initiation. Based on those observations a new parameter involving these three geometrical factors was developed to predict surface crack initiation sites.","PeriodicalId":10639,"journal":{"name":"Computational Materials Science eJournal","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3860382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
During service of gas turbine engines, high cycle fatigue of titanium is a leading cause of component failure highlighting the need for better understanding of the crack initiation mechanism to predict initiation sites. In this study, the relationship between plastic slip activity and fatigue crack initiation was investigated in a near-α titanium alloy using cyclic four-point bending at up to 90% of the proof stress, with the finding from surface characterization that plasticity at such low stress levels was dominated by the basal slip and two types of cracking were seen parallel to basal slip traces. Detailed 3D analysis of both crack types highlighted out-of-plane Burgers vector activity for the observed basal slip associated with crack initiation, consistent with the classic surface roughening mechanism. The transgranular crack initiation was accompanied by the formation of crystallographic facet which was identified to be 6° away from the basal plane due to additional prismatic slip activation during multi-step crack formation. The intergranular crack facet along the boundary between primary α grain pairs, which have their c-axes aligned nearly parallel to each other but with mis-aligned prismatic planes, was formed by an easy cleavage in one step along the basal plane. Statistical evaluation demonstrated that grains combining a moderately high Schmid factor for basal slip, high resolved tensile stress along the c-axis and the Burgers vector being orientated strongly out-of-surface plane favoured crack initiation. Based on those observations a new parameter involving these three geometrical factors was developed to predict surface crack initiation sites.