Kakeru Tsuchiya, Shohei Nakata, M. Ohno, Shigetaka Tamagawa, H. Shibata, K. Hashimoto
{"title":"FABRICATION OF POROUS β-TRICALCIUM PHOSPHATE SCAFFOLDS USING FOAM REPLICA WITH 3D TECHNOLOGY","authors":"Kakeru Tsuchiya, Shohei Nakata, M. Ohno, Shigetaka Tamagawa, H. Shibata, K. Hashimoto","doi":"10.3363/prb.37.32","DOIUrl":null,"url":null,"abstract":": The present work is based on prior research into the synthesis of porous β-tricalcium phosphate (β-TCP) with continuous pores by applying a β-TCP suspension onto a porous polyurethane foam by spray coating followed by pyrolysis of the foam. In the work reported herein, the three-dimensional (3D) pore structure of a polyurethane foam specimen was scanned using X-ray computerized tomography after which a porous acrylic foam with an optimized pore structure was fabricated using a 3D printer based on this scan. The pore size and pillar diameter of the porous printed material could be modified simply by changing the brightness value of the image data in the processing software. Specifically, the pillar diameter was increased while the pore size became smaller as the brightness was increased. β-TCP with interconnecting pores could be easily fabricated by spray coating these printed molds. The physical properties and porous structure of the product could also be tuned by modifying the pore structure of the foam and the amount of spray coating. The porous β-TCP obtained in this study had sufficient physical properties to be used as a scaffold material, suggesting the possibility of applying this scanning process to other porous materials, including living bones.","PeriodicalId":20022,"journal":{"name":"Phosphorus Research Bulletin","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phosphorus Research Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3363/prb.37.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
: The present work is based on prior research into the synthesis of porous β-tricalcium phosphate (β-TCP) with continuous pores by applying a β-TCP suspension onto a porous polyurethane foam by spray coating followed by pyrolysis of the foam. In the work reported herein, the three-dimensional (3D) pore structure of a polyurethane foam specimen was scanned using X-ray computerized tomography after which a porous acrylic foam with an optimized pore structure was fabricated using a 3D printer based on this scan. The pore size and pillar diameter of the porous printed material could be modified simply by changing the brightness value of the image data in the processing software. Specifically, the pillar diameter was increased while the pore size became smaller as the brightness was increased. β-TCP with interconnecting pores could be easily fabricated by spray coating these printed molds. The physical properties and porous structure of the product could also be tuned by modifying the pore structure of the foam and the amount of spray coating. The porous β-TCP obtained in this study had sufficient physical properties to be used as a scaffold material, suggesting the possibility of applying this scanning process to other porous materials, including living bones.