Selvakumar Murugesan, C. Ragavendran, Amir Ali, Velusamy Arumugam, D. Lakshmanan, P. Palanichamy, M. Venkatesan, C. Kamaraj, J. Luna-Arias, Fernández-Luqueño Fabián, S. Khan, Z. Mashwani, M. Younas
{"title":"Screening and Druggability Analysis of Marine Active Metabolites against SARS-CoV-2: An Integrative Computational Approach","authors":"Selvakumar Murugesan, C. Ragavendran, Amir Ali, Velusamy Arumugam, D. Lakshmanan, P. Palanichamy, M. Venkatesan, C. Kamaraj, J. Luna-Arias, Fernández-Luqueño Fabián, S. Khan, Z. Mashwani, M. Younas","doi":"10.20944/preprints202212.0008.v1","DOIUrl":null,"url":null,"abstract":"Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have triggered a recent pandemic of respiratory disease and affected almost every country all over the world. A large amount of natural bioactive compounds are under clinical investigation for various diseases. In particular, marine natural compounds are gaining more attention in the new drug development process. The present study aimed to identify potential marine-derived inhibitors against the target proteins of COVID-19 using a computational approach. Currently, 16 marine clinical-level compounds were selected for computational screening against the 4 SARS-CoV-2 main proteases. Computational screening resulted from the best drug candidates for each target based on the binding affinity scores and amino acid interactions. Among these, five marine-derived compounds, namely, chrysophaentin A (−6.6 kcal/mol), geodisterol sulfates (−6.6 kcal/mol), hymenidin (−6.4 kcal/mol), plinabulin (−6.4 kcal/mol), and tetrodotoxin (−6.3 kcal/mol) expressed minimized binding energy and molecular interactions, such as covalent and hydrophobic interactions, with the SARS CoV-2 main protease. Using molecular dynamic studies, the root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (ROG), and hydrogen bond (H-Bond) values were calculated for the SARS-CoV-2 main protease with a hymenidin docked complex. Additionally, in silico drug-likeness and pharmacokinetic property assessments of the compounds demonstrated favorable druggability. These results suggest that marine natural compounds are capable of fighting SARS-CoV-2. Further in vitro and in vivo studies need to be carried out to confirm their inhibitory potential.","PeriodicalId":43005,"journal":{"name":"Journal of International Translational Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of International Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.20944/preprints202212.0008.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have triggered a recent pandemic of respiratory disease and affected almost every country all over the world. A large amount of natural bioactive compounds are under clinical investigation for various diseases. In particular, marine natural compounds are gaining more attention in the new drug development process. The present study aimed to identify potential marine-derived inhibitors against the target proteins of COVID-19 using a computational approach. Currently, 16 marine clinical-level compounds were selected for computational screening against the 4 SARS-CoV-2 main proteases. Computational screening resulted from the best drug candidates for each target based on the binding affinity scores and amino acid interactions. Among these, five marine-derived compounds, namely, chrysophaentin A (−6.6 kcal/mol), geodisterol sulfates (−6.6 kcal/mol), hymenidin (−6.4 kcal/mol), plinabulin (−6.4 kcal/mol), and tetrodotoxin (−6.3 kcal/mol) expressed minimized binding energy and molecular interactions, such as covalent and hydrophobic interactions, with the SARS CoV-2 main protease. Using molecular dynamic studies, the root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (ROG), and hydrogen bond (H-Bond) values were calculated for the SARS-CoV-2 main protease with a hymenidin docked complex. Additionally, in silico drug-likeness and pharmacokinetic property assessments of the compounds demonstrated favorable druggability. These results suggest that marine natural compounds are capable of fighting SARS-CoV-2. Further in vitro and in vivo studies need to be carried out to confirm their inhibitory potential.
期刊介绍:
Journal of International Translational Medicine (JITM, ISSN 2227-6394), founded in 2012, is an English academic journal published by Journal of International Translational Medicine Co., Ltd and sponsored by International Fderation of Translational Medicine. JITM is an open access journal freely serving to submit, review, publish, read and download full text and quote. JITM is a quarterly publication with the first issue published in March, 2013, and all articles published in English are compiled and edited by professional graphic designers according to the international compiling and editing standard. All members of the JITM Editorial Board are the famous international specialists in the field of translational medicine who come from twenty different countries and areas such as USA, Britain, France, Germany and so on.