Supporting the Statistical Analysis of Variability Models

R. Heradio, David Fernández-Amorós, Christoph Mayr-Dorn, Alexander Egyed
{"title":"Supporting the Statistical Analysis of Variability Models","authors":"R. Heradio, David Fernández-Amorós, Christoph Mayr-Dorn, Alexander Egyed","doi":"10.1109/ICSE.2019.00091","DOIUrl":null,"url":null,"abstract":"Variability models are broadly used to specify the configurable features of highly customizable software. In practice, they can be large, defining thousands of features with their dependencies and conflicts. In such cases, visualization techniques and automated analysis support are crucial for understanding the models. This paper contributes to this line of research by presenting a novel, probabilistic foundation for statistical reasoning about variability models. Our approach not only provides a new way to visualize, describe and interpret variability models, but it also supports the improvement of additional state-of-the-art methods for software product lines; for instance, providing exact computations where only approximations were available before, and increasing the sensitivity of existing analysis operations for variability models. We demonstrate the benefits of our approach using real case studies with up to 17,365 features, and written in two different languages (KConfig and feature models).","PeriodicalId":6736,"journal":{"name":"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)","volume":"28 1","pages":"843-853"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2019.00091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Variability models are broadly used to specify the configurable features of highly customizable software. In practice, they can be large, defining thousands of features with their dependencies and conflicts. In such cases, visualization techniques and automated analysis support are crucial for understanding the models. This paper contributes to this line of research by presenting a novel, probabilistic foundation for statistical reasoning about variability models. Our approach not only provides a new way to visualize, describe and interpret variability models, but it also supports the improvement of additional state-of-the-art methods for software product lines; for instance, providing exact computations where only approximations were available before, and increasing the sensitivity of existing analysis operations for variability models. We demonstrate the benefits of our approach using real case studies with up to 17,365 features, and written in two different languages (KConfig and feature models).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持变异模型的统计分析
可变性模型被广泛用于指定高度可定制软件的可配置特性。在实践中,它们可能很大,定义了数千个带有依赖关系和冲突的特性。在这种情况下,可视化技术和自动分析支持对于理解模型至关重要。本文通过提出一种关于变异模型的统计推理的新颖的概率基础,为这一研究领域做出了贡献。我们的方法不仅提供了一种可视化、描述和解释可变性模型的新方法,而且还支持对软件产品线的其他最先进方法的改进;例如,提供精确的计算,而以前只有近似值可用,并增加现有的分析操作对可变性模型的敏感性。我们通过使用两种不同的语言(KConfig和特征模型)编写的多达17,365个特征的真实案例研究来展示我们方法的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VFix: Value-Flow-Guided Precise Program Repair for Null Pointer Dereferences Search-Based Energy Testing of Android Scalable Approaches for Test Suite Reduction A System Identification Based Oracle for Control-CPS Software Fault Localization Training Binary Classifiers as Data Structure Invariants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1