{"title":"CHAPTER 14. Noncovalent Interaction-assisted Redox Catalysis in Reductive Dehalogenation","authors":"S. Kurek, Piotr P Romańczyk","doi":"10.1039/9781788016490-00302","DOIUrl":null,"url":null,"abstract":"This chapter demonstrates how common are noncovalent interactions assisting catalytic reductive dehalogenation, including enzymatic reactions in reductive dehalogenases. Examples are given of halogen bonding, specific to the reactants in this process, facilitating it, but also hydrogen bonding, which may make the carbon–halogen bond more prone to cleavage or even provide a path for the electron transfer. Various types of noncovalent interactions locate the enzyme substrate in a position ideal for dehalogenation to proceed. Such systems are described, and also model systems, in which proximity effects have been shown to operate. The importance of quantum-chemical calculations in the discovery of noncovalent effects and revealing their significance for the efficiency and selectivity of reductive dehalogenation is also stressed.","PeriodicalId":10054,"journal":{"name":"Catalysis Series","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781788016490-00302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter demonstrates how common are noncovalent interactions assisting catalytic reductive dehalogenation, including enzymatic reactions in reductive dehalogenases. Examples are given of halogen bonding, specific to the reactants in this process, facilitating it, but also hydrogen bonding, which may make the carbon–halogen bond more prone to cleavage or even provide a path for the electron transfer. Various types of noncovalent interactions locate the enzyme substrate in a position ideal for dehalogenation to proceed. Such systems are described, and also model systems, in which proximity effects have been shown to operate. The importance of quantum-chemical calculations in the discovery of noncovalent effects and revealing their significance for the efficiency and selectivity of reductive dehalogenation is also stressed.