Arthur Mendes, David Nam, Xiang Lin, J. Stewart, B. Fan, D. Dong, R. Burgos
{"title":"Protection Circuitry Design to Mitigate Failure Propagation for 10 kV SiC MOSFETs in a 22 kV DC 13.8 kV AC Flying Capacitor Multilevel Converter","authors":"Arthur Mendes, David Nam, Xiang Lin, J. Stewart, B. Fan, D. Dong, R. Burgos","doi":"10.1109/COMPEL52896.2023.10221181","DOIUrl":null,"url":null,"abstract":"The operation and failure modes of the flying capacitor multilevel converter topology are well-known and the protections for Si IGBT-based converters are well established. However, when it comes to high voltage SiC MOSFET-based converters there are some particularities that must be evaluated: shorter energy withstanding time, higher dv/dt and higher insulation stress. This paper provides an assessment of the failure modes for a 7-level 13.8 kV AC 22 kV DC 1.1 MVA three-phase flying capacitor converter using 10 kVSiC MOSFETs, an analysis of the fault propagation mechanism between cells and the design of a transient voltage suppressor (TVS) diode-based protection module to prevent it.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"46 1","pages":"1-8"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/COMPEL52896.2023.10221181","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The operation and failure modes of the flying capacitor multilevel converter topology are well-known and the protections for Si IGBT-based converters are well established. However, when it comes to high voltage SiC MOSFET-based converters there are some particularities that must be evaluated: shorter energy withstanding time, higher dv/dt and higher insulation stress. This paper provides an assessment of the failure modes for a 7-level 13.8 kV AC 22 kV DC 1.1 MVA three-phase flying capacitor converter using 10 kVSiC MOSFETs, an analysis of the fault propagation mechanism between cells and the design of a transient voltage suppressor (TVS) diode-based protection module to prevent it.
期刊介绍:
COMPEL exists for the discussion and dissemination of computational and analytical methods in electrical and electronic engineering. The main emphasis of papers should be on methods and new techniques, or the application of existing techniques in a novel way. Whilst papers with immediate application to particular engineering problems are welcome, so too are papers that form a basis for further development in the area of study. A double-blind review process ensures the content''s validity and relevance.