A space structural mechanics model of silicene

M. Motamedi
{"title":"A space structural mechanics model of silicene","authors":"M. Motamedi","doi":"10.1177/2397791420905237","DOIUrl":null,"url":null,"abstract":"The two-dimensional nanostructures such as graphene, silicene, germanene, and stanene have attracted a lot of attention in recent years. Many studies have been done on graphene, but other two-dimensional structures have not yet been studied extensively. In this work, a molecular dynamics simulation of silicene was done and stress–strain curve of silicene was obtained. Then, the mechanical properties of silicene were investigated using the proposed structural molecular mechanics method. First, using the relations governing the force field and the Lifson–Wershel potential function and structural mechanics relations, the coefficients for the BEAM elements was determined, and a structural mechanics model for silicene was proposed. Then, a silicene sheet with 65 Å × 65 Å was modeled, and Young’s modulus of silicene was obtained. In addition, the natural frequencies and mode shapes of silicene were calculated using finite element method. The results are in good agreement with reports by other papers.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":"51 1","pages":"10 - 3"},"PeriodicalIF":4.2000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2397791420905237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 6

Abstract

The two-dimensional nanostructures such as graphene, silicene, germanene, and stanene have attracted a lot of attention in recent years. Many studies have been done on graphene, but other two-dimensional structures have not yet been studied extensively. In this work, a molecular dynamics simulation of silicene was done and stress–strain curve of silicene was obtained. Then, the mechanical properties of silicene were investigated using the proposed structural molecular mechanics method. First, using the relations governing the force field and the Lifson–Wershel potential function and structural mechanics relations, the coefficients for the BEAM elements was determined, and a structural mechanics model for silicene was proposed. Then, a silicene sheet with 65 Å × 65 Å was modeled, and Young’s modulus of silicene was obtained. In addition, the natural frequencies and mode shapes of silicene were calculated using finite element method. The results are in good agreement with reports by other papers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅烯的空间结构力学模型
石墨烯、硅烯、锗烯、斯坦烯等二维纳米结构近年来引起了人们的广泛关注。对石墨烯的研究很多,但对其他二维结构的研究还不够广泛。本文对硅烯进行了分子动力学模拟,得到了硅烯的应力-应变曲线。然后,采用本文提出的结构分子力学方法对硅烯的力学性能进行了研究。首先,利用控制力场的关系、Lifson-Wershel势函数和结构力学关系,确定了BEAM单元的系数,并提出了硅烯的结构力学模型;然后,对尺寸为65 Å × 65 Å的硅烯薄片进行建模,得到了硅烯的杨氏模量。此外,用有限元法计算了硅烯的固有频率和振型。研究结果与其他文献的报道基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.00
自引率
1.70%
发文量
24
期刊介绍: Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.
期刊最新文献
Performance of carbon nanotubes (CNTs) on the development of radiating hybrid nanofluid flow through an stretching cylinder Optimizing compressive mechanical properties and water absorption of polycaprolactone/nano-hydroxyapatite composite scaffolds by 3D printing based on fused deposition modeling Effectiveness of silver-magnesium oxide-water hybrid nanofluid in Couette channel Optimization and fuzzy model for evaluation of mechanical and tribological properties of Al-CNT-Si3N4 based nano and hybrid composites Adsorption investigation of a composite of metal-organic framework and polyethylene oxide hydrogel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1