Improper Multivariate Receiver Operating Characteristic (iMROC) Curve

S. Balaswamy, R. V. Vardhan, G. Sameera
{"title":"Improper Multivariate Receiver Operating Characteristic (iMROC) Curve","authors":"S. Balaswamy, R. V. Vardhan, G. Sameera","doi":"10.19139/soic-2310-5070-555","DOIUrl":null,"url":null,"abstract":"In a multivariate setup, the classification techniques have its significance in identifying the exact status of the individual/observer along with accuracy of the test. One such classification technique is the Multivariate Receiver Operating Characteristic (MROC) Curve. This technique is well known to explain the extent of correct classification with the curve above the random classifier (guessing line) when it satisfies all of its properties especially the property of increasing likelihood ratio function. However, there are circumstances where the curve violates the above property. Such a curve is termed as improper curve. This paper demonstrates the methodology of improperness of the MROC Curve and ways of measuring it. The methodology is explained using real data sets.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"120 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a multivariate setup, the classification techniques have its significance in identifying the exact status of the individual/observer along with accuracy of the test. One such classification technique is the Multivariate Receiver Operating Characteristic (MROC) Curve. This technique is well known to explain the extent of correct classification with the curve above the random classifier (guessing line) when it satisfies all of its properties especially the property of increasing likelihood ratio function. However, there are circumstances where the curve violates the above property. Such a curve is termed as improper curve. This paper demonstrates the methodology of improperness of the MROC Curve and ways of measuring it. The methodology is explained using real data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不正确的多变量接收者工作特征(iMROC)曲线
在多变量设置中,分类技术在识别个体/观察者的确切状态以及测试的准确性方面具有重要意义。其中一种分类技术是多元接收者工作特征曲线(Multivariate Receiver Operating Characteristic, MROC)。当随机分类器(猜测线)上的曲线满足其所有性质,特别是增加似然比函数的性质时,该技术以解释正确分类的程度而闻名。然而,在某些情况下,曲线违反了上述性质。这样的曲线称为反常曲线。本文论述了MROC曲线不合理的方法学及测量方法。使用实际数据集解释了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Analysis Based on Adaptive Progressive Hybrid Censored Data From Lomax Distribution A Berry-Esseen Bound for Nonlinear Statistics with Bounded Differences The Weibull Distribution: Reliability Characterization Based on Linear and Circular Consecutive Systems Infinity Substitute in Finding Exact Minimum of Total Weighted Tardiness in Tight-Tardy Progressive 1-machine Scheduling by Idling-free Preemptions Testing the Validity of Lindley Model Based on Informational Energy with Application to Real Medical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1