M. Nazeer, Sadaf Anila, H. Bibi, Zulfiqar Ali, M. Nazir
{"title":"HALL CURRENT AND LUBRICATION EFFECTS ON MULTIPHASE FLOWS OF NON-NEWTONIAN THROUGH AN INCLINED CHANNEL WITH FLEXIBLE WALLS","authors":"M. Nazeer, Sadaf Anila, H. Bibi, Zulfiqar Ali, M. Nazir","doi":"10.1615/nanoscitechnolintj.v14.i4.40","DOIUrl":null,"url":null,"abstract":"The effects of heat transfer rate on the motion of round shape solid particles through a non-Newtonian fluid due to peristaltic waves have been investigated in this theoretical study. The governing equations for the current flow problems are modeled for fluid and particle phases by using the continuity, momentum, and energy equations with the help of long wavelength approximation and creeping flow regime. The momentum equations are updated with the addition of Hall current and porous medium terms to capture the effects of Hall current and porous medium parameters, while the energy equation is extended for the thermal radiation effects on the current flow phenomena. The coupled differential equations are solved analytically. The physical quantities are displayed for a wider range of physical parameters; trapping phenomena are also discussed through streamlines contours. The results revealed that the magnitude of trapped bolus reduces dramatically for larger inclinations. The Darcy number diminishes the temperature distribution inside the system. The Hall current parameter enhanced the velocity distribution while the Hartmann number diminished the velocity profile.","PeriodicalId":51672,"journal":{"name":"Nanoscience and Technology-An International Journal","volume":"30 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscience and Technology-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/nanoscitechnolintj.v14.i4.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of heat transfer rate on the motion of round shape solid particles through a non-Newtonian fluid due to peristaltic waves have been investigated in this theoretical study. The governing equations for the current flow problems are modeled for fluid and particle phases by using the continuity, momentum, and energy equations with the help of long wavelength approximation and creeping flow regime. The momentum equations are updated with the addition of Hall current and porous medium terms to capture the effects of Hall current and porous medium parameters, while the energy equation is extended for the thermal radiation effects on the current flow phenomena. The coupled differential equations are solved analytically. The physical quantities are displayed for a wider range of physical parameters; trapping phenomena are also discussed through streamlines contours. The results revealed that the magnitude of trapped bolus reduces dramatically for larger inclinations. The Darcy number diminishes the temperature distribution inside the system. The Hall current parameter enhanced the velocity distribution while the Hartmann number diminished the velocity profile.