Studies on Interfacial Characteristics of Highly Dispersible Silica Reinforced Epoxidized Natural Rubber Compounds

P. Manoharan, Tuhin Chatterjee, S. Pal, N. Das, K. Naskar
{"title":"Studies on Interfacial Characteristics of Highly Dispersible Silica Reinforced Epoxidized Natural Rubber Compounds","authors":"P. Manoharan, Tuhin Chatterjee, S. Pal, N. Das, K. Naskar","doi":"10.1080/03602559.2017.1410833","DOIUrl":null,"url":null,"abstract":"ABSTRACT The present work examines the effect of two different specific surface areas of highly dispersible silica (HDS)-reinforced epoxidized natural rubber (ENR) composites. The influences of different blend ratio between ENRs consisting 25 and 50 mol% of epoxidation-based (ENR-25/ENR-50) composites was studied in detail. The primary objective is to investigate the interfacial area of HDS surface involved in filler-to-rubber interaction mechanisms for the better reinforcement. Notable improvement in overall properties of these green composites are corroborated with various meticulous characterization including cure characteristics, specific bound rubber content, physicomechanical, dynamic mechanical properties, etc. Increasing the specific surface area of HDS and their subsequent interface with ENR matrix invokes its superior dispersion. Small angle X-ray scattering (SAXS) has been used to analyze the particles network and clusters establishment in green composites. The present SAXS method provides a unique insight into the cluster formation according to the Beaucage model. However, SAXS results demonstrate that particles networks can be effectively suppressed by increasing specific surface area of HDS. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":"75 1","pages":"1452 - 1462"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer-Plastics Technology and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03602559.2017.1410833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 6

Abstract

ABSTRACT The present work examines the effect of two different specific surface areas of highly dispersible silica (HDS)-reinforced epoxidized natural rubber (ENR) composites. The influences of different blend ratio between ENRs consisting 25 and 50 mol% of epoxidation-based (ENR-25/ENR-50) composites was studied in detail. The primary objective is to investigate the interfacial area of HDS surface involved in filler-to-rubber interaction mechanisms for the better reinforcement. Notable improvement in overall properties of these green composites are corroborated with various meticulous characterization including cure characteristics, specific bound rubber content, physicomechanical, dynamic mechanical properties, etc. Increasing the specific surface area of HDS and their subsequent interface with ENR matrix invokes its superior dispersion. Small angle X-ray scattering (SAXS) has been used to analyze the particles network and clusters establishment in green composites. The present SAXS method provides a unique insight into the cluster formation according to the Beaucage model. However, SAXS results demonstrate that particles networks can be effectively suppressed by increasing specific surface area of HDS. GRAPHICAL ABSTRACT
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高分散性二氧化硅增强环氧化天然橡胶化合物的界面特性研究
摘要:本研究考察了两种不同比表面积的高分散二氧化硅(HDS)增强环氧化天然橡胶(ENR)复合材料的影响。详细研究了环氧基(ENR-25/ENR-50)复合材料的共混比为25和50 mol%时对环氧基复合材料性能的影响。主要目的是研究HDS表面的界面面积参与填料与橡胶的相互作用机制,以获得更好的增强。这些绿色复合材料的整体性能得到了显著改善,包括固化特性、比结合橡胶含量、物理力学性能、动态力学性能等。增加HDS的比表面积及其随后与ENR基体的界面,可使其具有较好的分散性。利用小角x射线散射(SAXS)分析了绿色复合材料中颗粒网络和团簇的形成。目前的SAXS方法根据Beaucage模型提供了对星团形成的独特见解。然而,SAXS结果表明,增加HDS的比表面积可以有效地抑制粒子网络。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer-Plastics Technology and Engineering
Polymer-Plastics Technology and Engineering 工程技术-高分子科学
CiteScore
1.71
自引率
0.00%
发文量
0
审稿时长
4 months
期刊最新文献
Fundamentals Index Plastics Technology Recommendations for Writing a Bachelor's/Master's Thesis at the IKT Plastics Materials Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1