{"title":"Comparison and Evaluation of Built Environment Factors for Developing Pedestrian Urban Travels","authors":"M. Nabipour, S. H. Nasseri, Elnaz Tavakoli Saber","doi":"10.1080/16168658.2021.2002664","DOIUrl":null,"url":null,"abstract":"Summary: This study examines the impacts of the built environment on pedestrian urban travels using a fuzzy AHP approach, by taking into account fifteen different variables based on three criteria: network design, environment, and safety. We gathered data from academic and industry experts using a fuzzy-based pairwise comparative survey. Advantage: We adopt two methods for selecting high-priority variables. The average value of cumulative weights, which prioritise variables with a weight greater than the average value, and a variation weights values analysis that divides variables into three groups as high, medium, and low priority depending on the weight pattern slope’s breaking points. The findings indicate that the weights variation approach is more effective. Limit: Because the survey statistical population comprised both academic and industrial experts, a significant amount of effort was spent identifying qualified candidates and gathering the necessary data. Results: The results prioritise effective variables including level of stress, lighting, obstacles on sidewalks, width of sidewalk, sidewalk surface quality, pedestrian bridges, cleanness and density of green areas, access to public transportation, intersection traffic controls, and walking utilities. Furthermore, the findings show that by growing policies on the variables of high and medium priority, up to 68 percent of the objective function can be achieved pedestrian urban commuting will significantly improve.","PeriodicalId":37623,"journal":{"name":"Fuzzy Information and Engineering","volume":"25 1","pages":"505 - 521"},"PeriodicalIF":1.3000,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Information and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16168658.2021.2002664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3
Abstract
Summary: This study examines the impacts of the built environment on pedestrian urban travels using a fuzzy AHP approach, by taking into account fifteen different variables based on three criteria: network design, environment, and safety. We gathered data from academic and industry experts using a fuzzy-based pairwise comparative survey. Advantage: We adopt two methods for selecting high-priority variables. The average value of cumulative weights, which prioritise variables with a weight greater than the average value, and a variation weights values analysis that divides variables into three groups as high, medium, and low priority depending on the weight pattern slope’s breaking points. The findings indicate that the weights variation approach is more effective. Limit: Because the survey statistical population comprised both academic and industrial experts, a significant amount of effort was spent identifying qualified candidates and gathering the necessary data. Results: The results prioritise effective variables including level of stress, lighting, obstacles on sidewalks, width of sidewalk, sidewalk surface quality, pedestrian bridges, cleanness and density of green areas, access to public transportation, intersection traffic controls, and walking utilities. Furthermore, the findings show that by growing policies on the variables of high and medium priority, up to 68 percent of the objective function can be achieved pedestrian urban commuting will significantly improve.
期刊介绍:
Fuzzy Information and Engineering—An International Journal wants to provide a unified communication platform for researchers in a wide area of topics from pure and applied mathematics, computer science, engineering, and other related fields. While also accepting fundamental work, the journal focuses on applications. Research papers, short communications, and reviews are welcome. Technical topics within the scope include: (1) Fuzzy Information a. Fuzzy information theory and information systems b. Fuzzy clustering and classification c. Fuzzy information processing d. Hardware and software co-design e. Fuzzy computer f. Fuzzy database and data mining g. Fuzzy image processing and pattern recognition h. Fuzzy information granulation i. Knowledge acquisition and representation in fuzzy information (2) Fuzzy Sets and Systems a. Fuzzy sets b. Fuzzy analysis c. Fuzzy topology and fuzzy mapping d. Fuzzy equation e. Fuzzy programming and optimal f. Fuzzy probability and statistic g. Fuzzy logic and algebra h. General systems i. Fuzzy socioeconomic system j. Fuzzy decision support system k. Fuzzy expert system (3) Soft Computing a. Soft computing theory and foundation b. Nerve cell algorithms c. Genetic algorithms d. Fuzzy approximation algorithms e. Computing with words and Quantum computation (4) Fuzzy Engineering a. Fuzzy control b. Fuzzy system engineering c. Fuzzy knowledge engineering d. Fuzzy management engineering e. Fuzzy design f. Fuzzy industrial engineering g. Fuzzy system modeling (5) Fuzzy Operations Research [...] (6) Artificial Intelligence [...] (7) Others [...]