Development of SARS-CoV-2 Inhibitors Using Molecular Docking Study with Different Coronavirus Spike Protein and ACE2

Israa. M. Shamkh, D. Pratiwi
{"title":"Development of SARS-CoV-2 Inhibitors Using Molecular Docking Study with Different Coronavirus Spike Protein and ACE2","authors":"Israa. M. Shamkh, D. Pratiwi","doi":"10.33084/jmd.v1i1.2212","DOIUrl":null,"url":null,"abstract":"The novel coronavirus SARS-CoV-2 is an acute respiratory tract infection that emerged in Wuhan city, China. The spike protein of coronaviruses is the main driving force for host cell recognition and is responsible for binding to the ACE2 receptor on the host cell and mediates the fusion of host and viral membranes. Recognizing compounds that could form a complex with the spike protein (S-protein) potently could inhibit SARS-CoV-2 infections. The software was used to survey 300 plant natural compounds or derivatives for their binding ability with the SARS-CoV-2 S-protein. The docking score for ligands towards each protein was calculated to estimate the binding free energy. Four compounds showed a strong ability to bind with the S-protein (neohesperidin, quercetin 3-O-rutinoside-7-O-glucoside, 14-ketostypodiol diacetate, and hydroxypropyl methylcellulose) and used to predict its docking model and binding regions. The highest predicted ligand/protein affinity was with quercetin 3-O-rutinoside-7-O-glucoside followed by neohesperidin. The four compounds were also tested against other related coronavirus and showed their binding ability to S-protein of the bat, SARS, and MERS coronavirus strains, indicating that they could bind and block the spike activities and subsequently prevent them infection of different coronaviruses. Molecular docking also showed the probability of the four ligands binding to the host cell receptor ACE2. The interaction residues and the binding energy for the complexes were identified. The strong binding ability of the four compounds to the S-protein and the ACE2 protein indicates that they might be used to develop therapeutics specific against SARS-CoV-2 and close related human coronaviruses.","PeriodicalId":16421,"journal":{"name":"Journal of Molecular Docking","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Docking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33084/jmd.v1i1.2212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The novel coronavirus SARS-CoV-2 is an acute respiratory tract infection that emerged in Wuhan city, China. The spike protein of coronaviruses is the main driving force for host cell recognition and is responsible for binding to the ACE2 receptor on the host cell and mediates the fusion of host and viral membranes. Recognizing compounds that could form a complex with the spike protein (S-protein) potently could inhibit SARS-CoV-2 infections. The software was used to survey 300 plant natural compounds or derivatives for their binding ability with the SARS-CoV-2 S-protein. The docking score for ligands towards each protein was calculated to estimate the binding free energy. Four compounds showed a strong ability to bind with the S-protein (neohesperidin, quercetin 3-O-rutinoside-7-O-glucoside, 14-ketostypodiol diacetate, and hydroxypropyl methylcellulose) and used to predict its docking model and binding regions. The highest predicted ligand/protein affinity was with quercetin 3-O-rutinoside-7-O-glucoside followed by neohesperidin. The four compounds were also tested against other related coronavirus and showed their binding ability to S-protein of the bat, SARS, and MERS coronavirus strains, indicating that they could bind and block the spike activities and subsequently prevent them infection of different coronaviruses. Molecular docking also showed the probability of the four ligands binding to the host cell receptor ACE2. The interaction residues and the binding energy for the complexes were identified. The strong binding ability of the four compounds to the S-protein and the ACE2 protein indicates that they might be used to develop therapeutics specific against SARS-CoV-2 and close related human coronaviruses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用不同冠状病毒刺突蛋白和ACE2分子对接研究开发SARS-CoV-2抑制剂
新型冠状病毒SARS-CoV-2是在中国武汉市出现的一种急性呼吸道感染。冠状病毒的刺突蛋白是宿主细胞识别的主要驱动力,负责与宿主细胞上的ACE2受体结合,介导宿主与病毒膜的融合。识别可以与刺突蛋白(s蛋白)形成复合物的化合物可以有效地抑制SARS-CoV-2感染。该软件用于调查300种植物天然化合物或衍生物与SARS-CoV-2 s蛋白的结合能力。计算配体与每个蛋白质的对接分数,以估计结合自由能。四种化合物(新橙皮苷、槲皮素3- o -芦丁苷-7- o -葡萄糖苷、14-酮苯二醇二乙酸酯和羟丙基甲基纤维素)与s蛋白具有很强的结合能力,并用于预测s蛋白的对接模型和结合区域。预测配体/蛋白亲和力最高的是槲皮素3- o -芦丁苷-7- o -葡萄糖苷,其次是新橙皮苷。这四种化合物还对其他相关冠状病毒进行了检测,显示出它们与蝙蝠、SARS和中东呼吸综合征冠状病毒株的s蛋白结合能力,表明它们可以结合并阻断刺突活性,从而阻止它们感染不同的冠状病毒。分子对接也显示了四种配体与宿主细胞受体ACE2结合的概率。鉴定了配合物的相互作用残基和结合能。这四种化合物与s蛋白和ACE2蛋白的强结合能力表明,它们可能用于开发针对SARS-CoV-2和密切相关的人类冠状病毒的特异性治疗药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Docking and Dynamics Study of Phytochemicals as Potent Inhibitors against SARS-CoV-2 Main Protease Identification of Bioactive Molecules from Combretum micranthum as Potential Inhibitors of α-amylase through Computational Investigations De Novo Class of Momordicoside with Potent and Selective Tumor Cell Growth Inhibitory Activity as Pyruvate Kinase Muscle Isozyme 2 and Anti-apoptotic Myeloid Leukemia 1 Inhibitors Phytochemical Molecules Binding with the Proteins of Mycolic Acid Synthesis Pathway of Mycobacterium tuberculosis Alantolactone: A Potential Multitarget Drug candidate for Prevention of SARS-CoV-2 Cell Entry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1