{"title":"Recent Advances in Several Organic Reaction Mechanisms","authors":"F. Sánchez-Viesca, Martha I Berros, Reina Gómez","doi":"10.11648/J.MC.20190701.14","DOIUrl":null,"url":null,"abstract":"This Review is a brief account of our theoretical contributions in seven research communications in the field of reaction mechanisms. Some mechanisms were corrected as in the case of the Baeyer-Drewsen indigo synthesis. When two very different reaction mechanisms had been proposed, as in the Clemmensen Reduction, a unified theory was provided. In other cases there were no reaction mechanisms at all, as in the Baeyer-Emmerling synthesis of indigo and in the Froehde Reaction for opioids. This deficit has been solved. The reaction that controls fructosazone regiochemistry has been described, and an internal process in a mixed osazone formation has been explained. All the proposals are based on well known reactivities and we provide complete and coherent reaction series with commented steps.","PeriodicalId":18605,"journal":{"name":"Modern Chemistry & Applications","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Chemistry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.MC.20190701.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This Review is a brief account of our theoretical contributions in seven research communications in the field of reaction mechanisms. Some mechanisms were corrected as in the case of the Baeyer-Drewsen indigo synthesis. When two very different reaction mechanisms had been proposed, as in the Clemmensen Reduction, a unified theory was provided. In other cases there were no reaction mechanisms at all, as in the Baeyer-Emmerling synthesis of indigo and in the Froehde Reaction for opioids. This deficit has been solved. The reaction that controls fructosazone regiochemistry has been described, and an internal process in a mixed osazone formation has been explained. All the proposals are based on well known reactivities and we provide complete and coherent reaction series with commented steps.