Adaptive Extraction-Based Independent Component Analysis for Time-Sensitive Applications

Huanzhuo Wu, Yunbin Sheri, Jiajing Zhang, H. Salah, I. Tsokalo, F. Fitzek
{"title":"Adaptive Extraction-Based Independent Component Analysis for Time-Sensitive Applications","authors":"Huanzhuo Wu, Yunbin Sheri, Jiajing Zhang, H. Salah, I. Tsokalo, F. Fitzek","doi":"10.1109/GLOBECOM42002.2020.9348166","DOIUrl":null,"url":null,"abstract":"Blind Source Separation (BSS) for time-sensitive applications in the Internet of Things (IoT) results in a tradeoff between separation speed and accuracy. Data extraction has been widely employed recently to solve this problem. Although the introduction of current data extraction methods reduces the required time for separation, it is at the expense of separation quality. In this paper, we propose Adaptive extraction-based Independent Component Analysis (AeICA) to address these limitations. Specifically, the speed of separation is improved by using the extracted subset of the available data without affecting the overall separation accuracy, which we demonstrate through extensive numerical evaluations. In particular, AeICA reduces the total separation time by 50% to 75%, compared to the most remarkable related work.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"09 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9348166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Blind Source Separation (BSS) for time-sensitive applications in the Internet of Things (IoT) results in a tradeoff between separation speed and accuracy. Data extraction has been widely employed recently to solve this problem. Although the introduction of current data extraction methods reduces the required time for separation, it is at the expense of separation quality. In this paper, we propose Adaptive extraction-based Independent Component Analysis (AeICA) to address these limitations. Specifically, the speed of separation is improved by using the extracted subset of the available data without affecting the overall separation accuracy, which we demonstrate through extensive numerical evaluations. In particular, AeICA reduces the total separation time by 50% to 75%, compared to the most remarkable related work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间敏感应用中基于自适应提取的独立成分分析
盲源分离(BSS)用于物联网(IoT)中对时间敏感的应用,需要在分离速度和精度之间进行权衡。近年来,数据提取技术被广泛应用于解决这一问题。虽然目前数据提取方法的引入减少了分离所需的时间,但却以牺牲分离质量为代价。在本文中,我们提出了基于自适应提取的独立成分分析(AeICA)来解决这些限制。具体来说,通过使用提取的可用数据子集来提高分离速度,而不会影响整体分离精度,我们通过广泛的数值评估证明了这一点。特别是,与最显著的相关工作相比,AeICA将总分离时间缩短了50%至75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AirID: Injecting a Custom RF Fingerprint for Enhanced UAV Identification using Deep Learning Oversampling Algorithm based on Reinforcement Learning in Imbalanced Problems FAST-RAM: A Fast AI-assistant Solution for Task Offloading and Resource Allocation in MEC Achieving Privacy-Preserving Vehicle Selection for Effective Content Dissemination in Smart Cities Age-optimal Transmission Policy for Markov Source with Differential Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1