M. Torabi, Hessameddin Yaghoobi, A. Colantoni, P. Biondi, K. Boubaker
{"title":"Analysis of Radiative Radial Fin with Temperature-Dependent Thermal Conductivity Using Nonlinear Differential Transformation Methods","authors":"M. Torabi, Hessameddin Yaghoobi, A. Colantoni, P. Biondi, K. Boubaker","doi":"10.1155/2013/470696","DOIUrl":null,"url":null,"abstract":"Radiative radial fin with temperature-dependent thermal conductivity is analyzed. The calculations are carried out by using differential transformation method (DTM), which is a seminumerical-analytical solution technique that can be applied to various types of differential equations, as well as the Boubaker polynomials expansion scheme (BPES). By using DTM, the nonlinear constrained governing equations are reduced to recurrence relations and related boundary conditions are transformed into a set of algebraic equations. The principle of differential transformation is briefly introduced and then applied to the aforementioned equations. Solutions are subsequently obtained by a process of inverse transformation. The current results are then compared with previously obtained results using variational iteration method (VIM), Adomian decomposition method (ADM), homotopy analysis method (HAM), and numerical solution (NS) in order to verify the accuracy of the proposed method. The findings reveal that both BPES and DTM can achieve suitable results in predicting the solution of such problems. After these verifications, we analyze fin efficiency and the effects of some physically applicable parameters in this problem such as radiation-conduction fin parameter, radiation sink temperature, heat generation, and thermal conductivity parameters.","PeriodicalId":31263,"journal":{"name":"工程设计学报","volume":"18 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"工程设计学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1155/2013/470696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 14
Abstract
Radiative radial fin with temperature-dependent thermal conductivity is analyzed. The calculations are carried out by using differential transformation method (DTM), which is a seminumerical-analytical solution technique that can be applied to various types of differential equations, as well as the Boubaker polynomials expansion scheme (BPES). By using DTM, the nonlinear constrained governing equations are reduced to recurrence relations and related boundary conditions are transformed into a set of algebraic equations. The principle of differential transformation is briefly introduced and then applied to the aforementioned equations. Solutions are subsequently obtained by a process of inverse transformation. The current results are then compared with previously obtained results using variational iteration method (VIM), Adomian decomposition method (ADM), homotopy analysis method (HAM), and numerical solution (NS) in order to verify the accuracy of the proposed method. The findings reveal that both BPES and DTM can achieve suitable results in predicting the solution of such problems. After these verifications, we analyze fin efficiency and the effects of some physically applicable parameters in this problem such as radiation-conduction fin parameter, radiation sink temperature, heat generation, and thermal conductivity parameters.
期刊介绍:
Chinese Journal of Engineering Design is a reputable journal published by Zhejiang University Press Co., Ltd. It was founded in December, 1994 as the first internationally cooperative journal in the area of engineering design research. Administrated by the Ministry of Education of China, it is sponsored by both Zhejiang University and Chinese Society of Mechanical Engineering. Zhejiang University Press Co., Ltd. is fully responsible for its bimonthly domestic and oversea publication. Its page is in A4 size. This journal is devoted to reporting most up-to-date achievements of engineering design researches and therefore, to promote the communications of academic researches and their applications to industry. Achievments of great creativity and practicablity are extraordinarily desirable. Aiming at supplying designers, developers and researchers of diversified technical artifacts with valuable references, its content covers all aspects of design theory and methodology, as well as its enabling environment, for instance, creative design, concurrent design, conceptual design, intelligent design, web-based design, reverse engineering design, industrial design, design optimization, tribology, design by biological analogy, virtual reality in design, structural analysis and design, design knowledge representation, design knowledge management, design decision-making systems, etc.