Particle–hole symmetries in condensed matter

M. Zirnbauer
{"title":"Particle–hole symmetries in condensed matter","authors":"M. Zirnbauer","doi":"10.1063/5.0035358","DOIUrl":null,"url":null,"abstract":"The term \"particle-hole symmetry\" is beset with conflicting meanings in contemporary physics. Conceived and written from a condensed-matter standpoint, the present paper aims to clarify and sharpen the terminology. In that vein, we propose to define the operation of \"particle-hole conjugation\" as the tautological algebra automorphism that simply swaps single-fermion creation and annihilation operators, and we construct its invariant lift to the Fock space. Particle-hole symmetries then arise for gapful or gapless free-fermion systems at half filling, as the concatenation of particle-hole conjugation with one or another involution that reverses the sign of the first-quantized Hamiltonian. We illustrate that construction principle with a series of examples including the Su-Schrieffer-Heeger model and the Kitaev-Majorana chain. For an enhanced perspective, we contrast particle-hole symmetries with the charge-conjugation symmetry of relativistic Dirac fermions. We go on to present two major applications in the realm of interacting electrons. For one, we argue that the celebrated Haldane phase of antiferromagnetic quantum spin chains is adiabatically connected to a free-fermion topological phase protected by a particle-hole symmetry. For another, we review the recent proposal by Son for a particle-hole conjugation symmetric effective field theory of the half-filled lowest Landau level, and we comment on the emerging microscopic picture of the composite fermion.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0035358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

The term "particle-hole symmetry" is beset with conflicting meanings in contemporary physics. Conceived and written from a condensed-matter standpoint, the present paper aims to clarify and sharpen the terminology. In that vein, we propose to define the operation of "particle-hole conjugation" as the tautological algebra automorphism that simply swaps single-fermion creation and annihilation operators, and we construct its invariant lift to the Fock space. Particle-hole symmetries then arise for gapful or gapless free-fermion systems at half filling, as the concatenation of particle-hole conjugation with one or another involution that reverses the sign of the first-quantized Hamiltonian. We illustrate that construction principle with a series of examples including the Su-Schrieffer-Heeger model and the Kitaev-Majorana chain. For an enhanced perspective, we contrast particle-hole symmetries with the charge-conjugation symmetry of relativistic Dirac fermions. We go on to present two major applications in the realm of interacting electrons. For one, we argue that the celebrated Haldane phase of antiferromagnetic quantum spin chains is adiabatically connected to a free-fermion topological phase protected by a particle-hole symmetry. For another, we review the recent proposal by Son for a particle-hole conjugation symmetric effective field theory of the half-filled lowest Landau level, and we comment on the emerging microscopic picture of the composite fermion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
凝聚态物质中的粒子-空穴对称性
在当代物理学中,“粒子-空穴对称”一词被各种相互矛盾的含义所困扰。从凝聚态物质的角度构思和写作,本文旨在澄清和锐化术语。在这种情况下,我们建议将“粒子-空穴共轭”操作定义为简单交换单费米子产生算子和湮灭算子的同义代数自同构,并构造其对Fock空间的不变提升。当粒子-空穴共轭与一种或另一种逆转第一量子化哈密顿符号的对合时,粒子-空穴对称性就会在半填充时出现。我们用一系列的例子来说明这种构造原理,包括Su-Schrieffer-Heeger模型和Kitaev-Majorana链。为了增强视角,我们将粒子-空穴对称性与相对论性狄拉克费米子的电荷共轭对称性进行了对比。我们继续介绍电子相互作用领域的两个主要应用。首先,我们认为反铁磁量子自旋链中著名的霍尔丹相与受粒子-空穴对称保护的自由费米子拓扑相是绝热相连的。另一方面,我们回顾了Son最近提出的半填充最低朗道能级的粒子-空穴共轭对称有效场理论,并对复合费米子的微观图像进行了评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Non-isentropic Relativistic Euler System Written in a Symmetric Hyperbolic Form Thermodynamic formalism for generalized countable Markov shifts Chaos and Turing machines on bidimensional models at zero temperature The first order expansion of a ground state energy of the ϕ4 model with cutoffs The classical limit of mean-field quantum spin systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1