{"title":"A farmers market architecture and ventilation design and its airflow analysis","authors":"Lei Chen, Chunhua Huang, Cheng Xu","doi":"10.1080/14733315.2021.1943923","DOIUrl":null,"url":null,"abstract":"Abstract Green buildings and sustainable designs require architectural designers to go beyond the basic building codes to improve overall building energy performance, optimize building ventilation, minimize life-cycle environmental impacts and make comfortable inside living environments. This paper briefly introduces the green design of the Lituo farmers market. Improving air quality inside of the built environment is the key for farmers market ventilation design as part of the green designs. The empirical method is used to design the height of the atrium of the farmers market to meet the ventilation requirements. A pressure loss model for outlet wire mesh screens was used for both empirical calculations and CFD. A simplified thermal boundary conditions for modeling human thermal effects were used to analyze the heat exchanges between the human body and the environment. The solar effects were only considered on the roof of the building. The outlet average exhaust gas speeds were measured and compared with CFD results. The results showed that the current method can help ventilation design and predicate the ventilation flow reasonably. The method developed in this study can be extended for other types of the building natural ventilation design and analysis.","PeriodicalId":55613,"journal":{"name":"International Journal of Ventilation","volume":"41 1","pages":"3 - 23"},"PeriodicalIF":1.1000,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ventilation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14733315.2021.1943923","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Green buildings and sustainable designs require architectural designers to go beyond the basic building codes to improve overall building energy performance, optimize building ventilation, minimize life-cycle environmental impacts and make comfortable inside living environments. This paper briefly introduces the green design of the Lituo farmers market. Improving air quality inside of the built environment is the key for farmers market ventilation design as part of the green designs. The empirical method is used to design the height of the atrium of the farmers market to meet the ventilation requirements. A pressure loss model for outlet wire mesh screens was used for both empirical calculations and CFD. A simplified thermal boundary conditions for modeling human thermal effects were used to analyze the heat exchanges between the human body and the environment. The solar effects were only considered on the roof of the building. The outlet average exhaust gas speeds were measured and compared with CFD results. The results showed that the current method can help ventilation design and predicate the ventilation flow reasonably. The method developed in this study can be extended for other types of the building natural ventilation design and analysis.
期刊介绍:
This is a peer reviewed journal aimed at providing the latest information on research and application.
Topics include:
• New ideas concerned with the development or application of ventilation;
• Validated case studies demonstrating the performance of ventilation strategies;
• Information on needs and solutions for specific building types including: offices, dwellings, schools, hospitals, parking garages, urban buildings and recreational buildings etc;
• Developments in numerical methods;
• Measurement techniques;
• Related issues in which the impact of ventilation plays an important role (e.g. the interaction of ventilation with air quality, health and comfort);
• Energy issues related to ventilation (e.g. low energy systems, ventilation heating and cooling loss);
• Driving forces (weather data, fan performance etc).