{"title":"An interleaved parallel volume renderer with PC-clusters","authors":"Antonio Garcia, Han-Wei Shen","doi":"10.2312/EGPGV/EGPGV02/051-060","DOIUrl":null,"url":null,"abstract":"Parallel Volume Rendering has been realized using various load distribution methods that subdivide either the screen, called image-space partitioning, or the volume dataset, called object-space partitioning. The major advantages of image-space partitioing are load balancing and low communication overhead, but processors require access to the full volume in order to render the volume with arbitrary views without frequent data redistributions. Subdividing the volume, on the other hand, provides storage scalability as more processors are added, but requires image compositing and thus higher communication bandwidth for producing the final image. In this paper, we present a parallel volume rendering algorithm that combines the benefits of both image-space and object-space partition schemes based on the idea of pixel and volume interleaving. We first subdivide the processors into groups. Each group is responsible for rendering a portion of the volume. Inside of a group, every member interleaves the data samples of the volume and the pixels of the screen. Interleaving the data provides storage scalability and interleaving the pixels reduces communication overhead. Our hybrid object- and image-space partitioning scheme was able to reduce the image compositing cost, incur in low communication overhead and balance rendering workload at the expense of image quality. Experiments on a PC-cluster demonstrate encouraging results.","PeriodicalId":90824,"journal":{"name":"Eurographics Symposium on Parallel Graphics and Visualization : EG PGV : [proceedings]. Eurographics Symposium on Parallel Graphics and Visualization","volume":"2004 1","pages":"51-59"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Symposium on Parallel Graphics and Visualization : EG PGV : [proceedings]. Eurographics Symposium on Parallel Graphics and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/EGPGV/EGPGV02/051-060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Parallel Volume Rendering has been realized using various load distribution methods that subdivide either the screen, called image-space partitioning, or the volume dataset, called object-space partitioning. The major advantages of image-space partitioing are load balancing and low communication overhead, but processors require access to the full volume in order to render the volume with arbitrary views without frequent data redistributions. Subdividing the volume, on the other hand, provides storage scalability as more processors are added, but requires image compositing and thus higher communication bandwidth for producing the final image. In this paper, we present a parallel volume rendering algorithm that combines the benefits of both image-space and object-space partition schemes based on the idea of pixel and volume interleaving. We first subdivide the processors into groups. Each group is responsible for rendering a portion of the volume. Inside of a group, every member interleaves the data samples of the volume and the pixels of the screen. Interleaving the data provides storage scalability and interleaving the pixels reduces communication overhead. Our hybrid object- and image-space partitioning scheme was able to reduce the image compositing cost, incur in low communication overhead and balance rendering workload at the expense of image quality. Experiments on a PC-cluster demonstrate encouraging results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有pc集群的交错并行体渲染器
并行体绘制已经使用各种负载分配方法实现,这些方法细分屏幕(称为图像空间分区)或卷数据集(称为对象空间分区)。映像空间分区的主要优点是负载平衡和低通信开销,但是处理器需要访问整个卷,以便在不频繁重新分配数据的情况下以任意视图呈现卷。另一方面,细分卷可以在添加更多处理器时提供存储可伸缩性,但需要进行图像合成,因此需要更高的通信带宽来生成最终图像。在本文中,我们提出了一种并行体绘制算法,该算法基于像素和体交错的思想,结合了图像空间和对象空间划分方案的优点。我们首先将处理器细分为组。每个小组负责渲染一部分体量。在组内部,每个成员将卷的数据样本与屏幕的像素交叉。交错的数据提供了存储可伸缩性,交错的像素减少了通信开销。我们的混合对象空间和图像空间分区方案能够降低图像合成成本,产生较低的通信开销,并以牺牲图像质量为代价平衡渲染工作量。在pc集群上的实验显示了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Freeprocessing: Transparent in situ visualization via data interception. Parallel in situ coupling of simulation with a fully featured visualization system A preview and exploratory technique for large-scale scientific simulations Revisiting parallel rendering for shared memory machines Cross-segment load balancing in parallel rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1