{"title":"STOCHASTIC SCENARIO-BASED TIME-STAGE OPTIMIZATION MODEL FOR THE LEAST EXPECTED TIME SHORTEST PATH PROBLEM","authors":"Lixing Yang, Xiaofei Yang, C. You","doi":"10.1142/S0218488513400023","DOIUrl":null,"url":null,"abstract":"Focusing on finding a pre-specified basis path in a network, this research formulates a two-stage stochastic optimization model for the least expected time shortest path problem, in which random scenario-based time-invariant link travel times are utilized to capture the uncertainty of the realworld traffic network. In this model, the first stage aims to find a basis path for the trip over all the scenarios, and the second stage intends to generate the remainder path adaptively when the realizations of random link travel times are updated after a pre-specified time threshold. The GAMS optimization software is introduced to find the optimal solution of the proposed model. The numerical experiments demonstrate the performance of the proposed approaches.","PeriodicalId":50283,"journal":{"name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","volume":"103 1 1","pages":"17-33"},"PeriodicalIF":1.0000,"publicationDate":"2013-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0218488513400023","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 13
Abstract
Focusing on finding a pre-specified basis path in a network, this research formulates a two-stage stochastic optimization model for the least expected time shortest path problem, in which random scenario-based time-invariant link travel times are utilized to capture the uncertainty of the realworld traffic network. In this model, the first stage aims to find a basis path for the trip over all the scenarios, and the second stage intends to generate the remainder path adaptively when the realizations of random link travel times are updated after a pre-specified time threshold. The GAMS optimization software is introduced to find the optimal solution of the proposed model. The numerical experiments demonstrate the performance of the proposed approaches.
期刊介绍:
The International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems is a forum for research on various methodologies for the management of imprecise, vague, uncertain or incomplete information. The aim of the journal is to promote theoretical or methodological works dealing with all kinds of methods to represent and manipulate imperfectly described pieces of knowledge, excluding results on pure mathematics or simple applications of existing theoretical results. It is published bimonthly, with worldwide distribution to researchers, engineers, decision-makers, and educators.