Flint: batch-interactive data-intensive processing on transient servers

Prateek Sharma, Tian Guo, Xin He, David E. Irwin, P. Shenoy
{"title":"Flint: batch-interactive data-intensive processing on transient servers","authors":"Prateek Sharma, Tian Guo, Xin He, David E. Irwin, P. Shenoy","doi":"10.1145/2901318.2901319","DOIUrl":null,"url":null,"abstract":"Cloud providers now offer transient servers, which they may revoke at anytime, for significantly lower prices than on-demand servers, which they cannot revoke. The low price of transient servers is particularly attractive for executing an emerging class of workload, which we call Batch-Interactive Data-Intensive (BIDI), that is becoming increasingly important for data analytics. BIDI workloads require large sets of servers to cache massive datasets in memory to enable low latency operation. In this paper, we illustrate the challenges of executing BIDI workloads on transient servers, where revocations (akin to failures) are the common case. To address these challenges, we design Flint, which is based on Spark and includes automated checkpointing and server selection policies that i) support batch and interactive applications and ii) dynamically adapt to application characteristics. We evaluate a prototype of Flint using EC2 spot instances, and show that it yields cost savings of up to 90% compared to using on-demand servers, while increasing running time by < 2%.","PeriodicalId":20737,"journal":{"name":"Proceedings of the Eleventh European Conference on Computer Systems","volume":"139 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2901318.2901319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

Abstract

Cloud providers now offer transient servers, which they may revoke at anytime, for significantly lower prices than on-demand servers, which they cannot revoke. The low price of transient servers is particularly attractive for executing an emerging class of workload, which we call Batch-Interactive Data-Intensive (BIDI), that is becoming increasingly important for data analytics. BIDI workloads require large sets of servers to cache massive datasets in memory to enable low latency operation. In this paper, we illustrate the challenges of executing BIDI workloads on transient servers, where revocations (akin to failures) are the common case. To address these challenges, we design Flint, which is based on Spark and includes automated checkpointing and server selection policies that i) support batch and interactive applications and ii) dynamically adapt to application characteristics. We evaluate a prototype of Flint using EC2 spot instances, and show that it yields cost savings of up to 90% compared to using on-demand servers, while increasing running time by < 2%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flint:在瞬态服务器上进行批量交互的数据密集型处理
云提供商现在提供临时服务器,他们可以随时撤销,价格远低于他们不能撤销的按需服务器。临时服务器的低价格对于执行一类新兴的工作负载特别有吸引力,我们称之为批处理交互式数据密集型工作负载(BIDI),它对数据分析变得越来越重要。BIDI工作负载需要大量服务器在内存中缓存大量数据集,以实现低延迟操作。在本文中,我们将说明在临时服务器上执行BIDI工作负载的挑战,其中撤销(类似于故障)是常见的情况。为了应对这些挑战,我们设计了Flint,它基于Spark,包括自动检查点和服务器选择策略,这些策略i)支持批处理和交互式应用程序,ii)动态适应应用程序的特征。我们使用EC2现场实例评估了Flint的原型,结果表明,与使用按需服务器相比,它可以节省高达90%的成本,而运行时间却增加了不到2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EuroSys '22: Seventeenth European Conference on Computer Systems, Rennes, France, April 5 - 8, 2022 EuroSys '21: Sixteenth European Conference on Computer Systems, Online Event, United Kingdom, April 26-28, 2021 EuroSys '20: Fifteenth EuroSys Conference 2020, Heraklion, Greece, April 27-30, 2020 STRADS: a distributed framework for scheduled model parallel machine learning NChecker: saving mobile app developers from network disruptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1