Variable Optical Buffer Using EIT in Three Level System Based on Semiconductor Conical Quantum Dots

N. Yaqoob, S. M. Ameen
{"title":"Variable Optical Buffer Using EIT in Three Level System Based on Semiconductor Conical Quantum Dots","authors":"N. Yaqoob, S. M. Ameen","doi":"10.31257/2018/jkp/2020/120108","DOIUrl":null,"url":null,"abstract":"A variable semiconductor optical buffer based on the electromagnetically induced transparency (EIT) in a three level conical quantum dot system (CQD) is theoretically investigated. The system is interacting with two (control and signal) laser beams. Signal light with subluminal velocity is possible in such system through the quantum interference effect induced by the control pump field. We investigate the refractive index and absorption spectra of the QD waveguide at different pump levels, which exhibit an optimal pump power for maximum slow-down factor (SDF). The group velocity SDF is theoretically analyzed as a function of the pump intensity at different broadened linewidths. The present study is based on the assumption that the medium is homogeneous. In this paper, a SDF as a function of CQD radius was studied. The simulation results indicate that the SDF increases with decreasing CQD radius.","PeriodicalId":16215,"journal":{"name":"Journal of Kufa - Physics","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Kufa - Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31257/2018/jkp/2020/120108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A variable semiconductor optical buffer based on the electromagnetically induced transparency (EIT) in a three level conical quantum dot system (CQD) is theoretically investigated. The system is interacting with two (control and signal) laser beams. Signal light with subluminal velocity is possible in such system through the quantum interference effect induced by the control pump field. We investigate the refractive index and absorption spectra of the QD waveguide at different pump levels, which exhibit an optimal pump power for maximum slow-down factor (SDF). The group velocity SDF is theoretically analyzed as a function of the pump intensity at different broadened linewidths. The present study is based on the assumption that the medium is homogeneous. In this paper, a SDF as a function of CQD radius was studied. The simulation results indicate that the SDF increases with decreasing CQD radius.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于半导体圆锥量子点的三能级系统中使用EIT的可变光缓冲器
从理论上研究了三能级圆锥量子点系统中基于电磁感应透明的可变半导体光缓冲器。该系统与两个(控制和信号)激光束相互作用。通过控制泵浦场诱导的量子干涉效应,可以在该系统中产生亚光速的信号光。我们研究了不同泵浦水平下QD波导的折射率和吸收光谱,得出了最大慢化因子(SDF)的最佳泵浦功率。从理论上分析了不同加宽线宽下泵浦强度对群速度SDF的影响。目前的研究是基于假设介质是均匀的。本文研究了SDF作为CQD半径的函数。仿真结果表明,SDF随CQD半径的减小而增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Endovenous Laser Ablation of Venous Ulcers of the Lower Limbs: A Study of the Relationship between Applied Laser Power and Age/Gender Simple Scenario of Photons Emission from Anti Charm–Gluon Interaction using QCD Theory Study of geometrical properties of 96Mo, 98Ru and 100Pd isotones within interacting boson model Tunneling magnetoresistance calculation for double quantum dot connected in parallel shape to ferromagnetic Leads Enhanced the Physical Properties of Thin Films by Doping Zinc Oxide with Tin Prepared by the Pyrolysis Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1