Forecasting battery state of charge for robot missions

Ameer Hamza, Nora Ayanian
{"title":"Forecasting battery state of charge for robot missions","authors":"Ameer Hamza, Nora Ayanian","doi":"10.1145/3019612.3019705","DOIUrl":null,"url":null,"abstract":"Due to limited power onboard, a significant factor for success of distributed teams of robots is energy-awareness. The ability to predict when power will be depleted beyond a certain point is necessary for recharging or returning to a base station. This paper presents a framework for forecasting state of charge (SOC) of a robot's battery for a given mission. A generalized and customizable mission description is formulated as a sequence of parametrized tasks defined for the robot; the missions are then mapped to expected change in SOC by training neural networks on experimental data. We present results from experiments on the Turtlebot 2 to establish the efficacy of this framework. The performance of the proposed framework is demonstrated for three distinct mission representations and compared to an existing method in the literature. Finally, we discuss the strengths and weaknesses of feedforward and recurrent neural network models in the context of this work.","PeriodicalId":20728,"journal":{"name":"Proceedings of the Symposium on Applied Computing","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Symposium on Applied Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3019612.3019705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Due to limited power onboard, a significant factor for success of distributed teams of robots is energy-awareness. The ability to predict when power will be depleted beyond a certain point is necessary for recharging or returning to a base station. This paper presents a framework for forecasting state of charge (SOC) of a robot's battery for a given mission. A generalized and customizable mission description is formulated as a sequence of parametrized tasks defined for the robot; the missions are then mapped to expected change in SOC by training neural networks on experimental data. We present results from experiments on the Turtlebot 2 to establish the efficacy of this framework. The performance of the proposed framework is demonstrated for three distinct mission representations and compared to an existing method in the literature. Finally, we discuss the strengths and weaknesses of feedforward and recurrent neural network models in the context of this work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测机器人任务的电池状态
由于机载电力有限,分布式机器人团队成功的一个重要因素是能源意识。对于充电或返回基站来说,预测电量何时耗尽的能力是必要的。本文提出了一种预测机器人电池荷电状态(SOC)的框架。将广义的、可定制的任务描述表述为为机器人定义的一系列参数化任务;然后,通过在实验数据上训练神经网络,将任务映射到SOC的预期变化。我们介绍了在Turtlebot 2上进行的实验结果,以确定该框架的有效性。提出的框架的性能证明了三种不同的任务表示,并与文献中的现有方法进行了比较。最后,我们在本研究的背景下讨论了前馈和循环神经网络模型的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tarski Handling bitcoin conflicts through a glimpse of structure Multi-CNN and decision tree based driving behavior evaluation Session details: WT - web technologies track Improving OR-PCA via smoothed spatially-consistent low-rank modeling for background subtraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1