Parallelized FPA-SVM: Parallelized parameter selection and classification using Flower Pollination Algorithm and Support Vector Machine

Jean-Charles Coetsier, Rachsuda Jiamthapthaksin
{"title":"Parallelized FPA-SVM: Parallelized parameter selection and classification using Flower Pollination Algorithm and Support Vector Machine","authors":"Jean-Charles Coetsier, Rachsuda Jiamthapthaksin","doi":"10.1109/JCSSE.2017.8025899","DOIUrl":null,"url":null,"abstract":"Support Vector Machine (SVM) is one of the most popular machine learning algorithm to perform classification tasks and help organizations in different ways to improve their efficiency. A lot of studies have been made to improve SVM including speed, accuracy, and/or scalability. The algorithm possesses parameters that need precision tuning to perform well. This work proposes a novel parallelized parameter selection using Flower Pollination Algorithm (FPA) to quickly find the optimal parameters of SVM. In particular, MapReduce algorithm introduced in big data framework is applied to both FPA and SVM, which forms a fully distributed algorithm to support a large dataset. The experimental results of Parallelized FPA-SVM on real datasets show its outstanding speed in generating optimal models while maintaining high accuracy.","PeriodicalId":6460,"journal":{"name":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"6 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2017.8025899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Support Vector Machine (SVM) is one of the most popular machine learning algorithm to perform classification tasks and help organizations in different ways to improve their efficiency. A lot of studies have been made to improve SVM including speed, accuracy, and/or scalability. The algorithm possesses parameters that need precision tuning to perform well. This work proposes a novel parallelized parameter selection using Flower Pollination Algorithm (FPA) to quickly find the optimal parameters of SVM. In particular, MapReduce algorithm introduced in big data framework is applied to both FPA and SVM, which forms a fully distributed algorithm to support a large dataset. The experimental results of Parallelized FPA-SVM on real datasets show its outstanding speed in generating optimal models while maintaining high accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行化FPA-SVM:基于授粉算法和支持向量机的并行化参数选择和分类
支持向量机(SVM)是最流行的机器学习算法之一,用于执行分类任务,并以不同的方式帮助组织提高效率。为了提高支持向量机的速度、准确性和/或可扩展性,已经进行了大量的研究。该算法具有需要精确调整的参数才能运行良好。为了快速找到支持向量机的最优参数,提出了一种基于授粉算法的并行化参数选择方法。特别是将大数据框架中引入的MapReduce算法同时应用于FPA和SVM,形成了支持大数据集的全分布式算法。在实际数据集上的实验结果表明,并行化FPA-SVM在保持较高准确率的前提下,能够快速生成最优模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Isolate-Set-Based In-Memory Parallel Subgraph Matching Framework A Fast Attitude Estimation Method Using Homography Matrix IOT for smart farm: A case study of the Lingzhi mushroom farm at Maejo University Analyzing user reviews in Thai language toward aspects in mobile applications Front-rear crossover: A new crossover technique for solving a trap problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1