Optimized Convolutional Neural Network based Colour Image Fusion

B. Lakshmipriya, N. Pavithra, D. Saraswathi
{"title":"Optimized Convolutional Neural Network based Colour Image Fusion","authors":"B. Lakshmipriya, N. Pavithra, D. Saraswathi","doi":"10.1109/ICSCAN49426.2020.9262439","DOIUrl":null,"url":null,"abstract":"Deep learning has been witnessing an unprecedented growth in various applications like image classification, image recognition, object recognition and so on. In this work, a novel multifocus fusion schematic is putforth using deep learning strategy for the fusion of more than two colour images. The activations of the convolutional neural network (CNN) are used to extract the prominent deep features of the source and these features are fused by the virtue of weighted averaging technique. Finally, the weighted average outputs of the activations of the source images are considered for the recovering the enhanced fused output the image. The fused image is found to be enhanced such that the entire image is free from motion blur and defocusing. Three popular deep learning architectures namely Alexnet, VGG16 and GoogLeNet are considered in this work. It is evident from the results presented in this work that, GoogLeNet based framework performs well when compared to Alexnet and VGG16.","PeriodicalId":6744,"journal":{"name":"2020 International Conference on System, Computation, Automation and Networking (ICSCAN)","volume":"97 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on System, Computation, Automation and Networking (ICSCAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCAN49426.2020.9262439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Deep learning has been witnessing an unprecedented growth in various applications like image classification, image recognition, object recognition and so on. In this work, a novel multifocus fusion schematic is putforth using deep learning strategy for the fusion of more than two colour images. The activations of the convolutional neural network (CNN) are used to extract the prominent deep features of the source and these features are fused by the virtue of weighted averaging technique. Finally, the weighted average outputs of the activations of the source images are considered for the recovering the enhanced fused output the image. The fused image is found to be enhanced such that the entire image is free from motion blur and defocusing. Three popular deep learning architectures namely Alexnet, VGG16 and GoogLeNet are considered in this work. It is evident from the results presented in this work that, GoogLeNet based framework performs well when compared to Alexnet and VGG16.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于优化卷积神经网络的彩色图像融合
深度学习在图像分类、图像识别、物体识别等各种应用中得到了前所未有的发展。在这项工作中,提出了一种新的多焦点融合原理图,使用深度学习策略融合两个以上的彩色图像。利用卷积神经网络(CNN)的激活来提取信号源的突出深度特征,并利用加权平均技术对这些特征进行融合。最后,考虑源图像激活的加权平均输出,用于恢复增强融合输出的图像。发现融合后的图像得到了增强,使得整个图像没有运动模糊和散焦。在这项工作中考虑了三种流行的深度学习架构,即Alexnet, VGG16和GoogLeNet。从本研究的结果可以明显看出,与Alexnet和VGG16相比,基于GoogLeNet的框架表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Web Folder Phishing Discovery and Prevention with Customer Image Verification Taxonomy of keyword extraction in Facebook using Decision Tree algorithm in NLP A meta-analytic review of student satisfaction studies in higher education Enhanced Medical Data Security and Perceptual Quality for Healthcare services A Smart Trolley for Smart Shopping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1