ORNInA: A decentralized, auction-based multi-agent coordination in ODT systems

IF 1.4 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE AI Communications Pub Date : 2021-01-01 DOI:10.3233/aic-201579
Alaa Daoud, Flavien Balbo, Paolo Gianessi, Gauthier Picard
{"title":"ORNInA: A decentralized, auction-based multi-agent coordination in ODT systems","authors":"Alaa Daoud, Flavien Balbo, Paolo Gianessi, Gauthier Picard","doi":"10.3233/aic-201579","DOIUrl":null,"url":null,"abstract":"On-Demand Transport (ODT) systems have attracted increasing attention in recent years. Traditional centralized dispatching can achieve optimal solutions, but NP-Hard complexity makes it unsuitable for online and dynamic problems. Centralized and decentralized heuristics can achieve fast, feasible solution at run-time with no guarantee on the quality. Starting from a feasible not optimal solution, we present in this paper a new solution model (ORNInA) consisting of two parallel coordination processes. The first one is a decentralized insertion-heuristic based algorithm to build vehicle schedules in order to solve a particular case of the dynamic Dial-A-Ride-Problem (DARP) as an ODT system, in which vehicles communicate via Vehicle-to-vehicle communication (V2V) and make decentralized decisions. The second coordination scheme is a continuous optimization process namely Pull-demand protocol, based on combinatorial auctions, in order to improve the quality of the global solution achieved by decentralized decision at run-time by exchanging resources between vehicles (k-opt). In its simplest implementation, k is set to 1 so that vehicles can exchange only one resource at a time. We evaluate and analyze the promising results of our contributed techniques on synthetic data for taxis operating in Saint-Etienne city, against a classical decentralized greedy approach and a centralized one that uses a classical mixed-integer linear program (MILP) solver.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"161 1","pages":"37-53"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/aic-201579","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 7

Abstract

On-Demand Transport (ODT) systems have attracted increasing attention in recent years. Traditional centralized dispatching can achieve optimal solutions, but NP-Hard complexity makes it unsuitable for online and dynamic problems. Centralized and decentralized heuristics can achieve fast, feasible solution at run-time with no guarantee on the quality. Starting from a feasible not optimal solution, we present in this paper a new solution model (ORNInA) consisting of two parallel coordination processes. The first one is a decentralized insertion-heuristic based algorithm to build vehicle schedules in order to solve a particular case of the dynamic Dial-A-Ride-Problem (DARP) as an ODT system, in which vehicles communicate via Vehicle-to-vehicle communication (V2V) and make decentralized decisions. The second coordination scheme is a continuous optimization process namely Pull-demand protocol, based on combinatorial auctions, in order to improve the quality of the global solution achieved by decentralized decision at run-time by exchanging resources between vehicles (k-opt). In its simplest implementation, k is set to 1 so that vehicles can exchange only one resource at a time. We evaluate and analyze the promising results of our contributed techniques on synthetic data for taxis operating in Saint-Etienne city, against a classical decentralized greedy approach and a centralized one that uses a classical mixed-integer linear program (MILP) solver.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ODT系统中分散的、基于拍卖的多代理协调
按需运输(ODT)系统近年来引起了越来越多的关注。传统的集中调度可以实现最优解,但NP-Hard的复杂性使其不适用于在线和动态问题。集中式和分散式启发式算法可以在不保证质量的情况下在运行时实现快速、可行的解决方案。本文从可行非最优解出发,提出了一个由两个并行协调过程组成的求解模型(ORNInA)。第一个是基于分散插入启发式算法构建车辆调度,以解决作为ODT系统的动态拨号乘车问题(DARP)的特定情况,其中车辆通过车对车通信(V2V)进行通信并做出分散决策。第二种协调方案是基于组合拍卖的连续优化过程,即Pull-demand协议,目的是通过车辆之间的资源交换(k-opt)来提高运行时分散决策所获得的全局解决方案的质量。在最简单的实现中,将k设置为1,以便车辆一次只能交换一种资源。针对经典的去中心化贪婪方法和使用经典混合整数线性规划(MILP)求解器的集中化方法,我们评估和分析了我们在圣艾蒂安市运营的出租车合成数据上贡献的技术的有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AI Communications
AI Communications 工程技术-计算机:人工智能
CiteScore
2.30
自引率
12.50%
发文量
34
审稿时长
4.5 months
期刊介绍: AI Communications is a journal on artificial intelligence (AI) which has a close relationship to EurAI (European Association for Artificial Intelligence, formerly ECCAI). It covers the whole AI community: Scientific institutions as well as commercial and industrial companies. AI Communications aims to enhance contacts and information exchange between AI researchers and developers, and to provide supranational information to those concerned with AI and advanced information processing. AI Communications publishes refereed articles concerning scientific and technical AI procedures, provided they are of sufficient interest to a large readership of both scientific and practical background. In addition it contains high-level background material, both at the technical level as well as the level of opinions, policies and news.
期刊最新文献
Multi-feature fusion dehazing based on CycleGAN Spatio-temporal deep learning framework for pedestrian intention prediction in urban traffic scenes Open-world object detection: A solution based on reselection mechanism and feature disentanglement MantaRay-ProM: An efficient process model discovery algorithm Token-modification adversarial attacks for natural language processing: A survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1