Channel characterization and throughput tradeoff for wireless sensor networks

Leonard E. Lightfoot, Ellen Laubie
{"title":"Channel characterization and throughput tradeoff for wireless sensor networks","authors":"Leonard E. Lightfoot, Ellen Laubie","doi":"10.1109/MILCOM.2012.6415681","DOIUrl":null,"url":null,"abstract":"With the growing number of wireless network standards operating in the unlicensed frequency band and the military moving toward commercial off the shelf technology, the next generation of wireless sensor networks must be robust against unintentional and hostile interference. One method that has gained interest to cope with the increased spectrum use and to combat the interference vulnerability in wireless sensor networks is frequency agile communication. These techniques typically entail spectrum sensing and dynamic frequency channel allocation. In this paper, the energy detection mechanism is used to investigate how the number of frequency channels characterized for spectrum sensing impacts the accuracy of frequency channel selection and how the number of channels characterized affects the achievable throughput. From the investigation, we observed a tradeoff between the number of channels characterized, the number of energy samples used in energy detection, and the achievable throughput.","PeriodicalId":18720,"journal":{"name":"MILCOM 2012 - 2012 IEEE Military Communications Conference","volume":"11 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2012 - 2012 IEEE Military Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2012.6415681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the growing number of wireless network standards operating in the unlicensed frequency band and the military moving toward commercial off the shelf technology, the next generation of wireless sensor networks must be robust against unintentional and hostile interference. One method that has gained interest to cope with the increased spectrum use and to combat the interference vulnerability in wireless sensor networks is frequency agile communication. These techniques typically entail spectrum sensing and dynamic frequency channel allocation. In this paper, the energy detection mechanism is used to investigate how the number of frequency channels characterized for spectrum sensing impacts the accuracy of frequency channel selection and how the number of channels characterized affects the achievable throughput. From the investigation, we observed a tradeoff between the number of channels characterized, the number of energy samples used in energy detection, and the achievable throughput.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线传感器网络的信道特性和吞吐量权衡
随着越来越多的无线网络标准在未经许可的频段上运行,以及军事向商用现成技术的发展,下一代无线传感器网络必须能够抵御无意和敌对干扰。频率敏捷通信是解决无线传感器网络中频谱使用增加和干扰脆弱性的一种方法。这些技术通常需要频谱感知和动态信道分配。本文利用能量检测机制研究频谱感知表征的信道数量如何影响频率通道选择的准确性,以及表征的信道数量如何影响可实现的吞吐量。从调查中,我们观察到表征通道数量,能量检测中使用的能量样本数量和可实现的吞吐量之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Open Standard for Ka-band Interoperable Satellite Antennas An approach to data correlation using JC3IEDM model The U.s. Army and Network-centric Warfare a Thematic Analysis of the Literature Technology diffusion and military users: Perceptions that predict adoption Cooperative Multi-tree Sleep Scheduling for Surveillance in Wireless Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1