On Outlier Rejection Phenomena in Bayes Inference

A. O’Hagan
{"title":"On Outlier Rejection Phenomena in Bayes Inference","authors":"A. O’Hagan","doi":"10.1111/J.2517-6161.1979.TB01090.X","DOIUrl":null,"url":null,"abstract":"SUMMARY Inference is considered for a location parameter given a random sample. Outliers are not explicitly modelled, but rejection of extreme observations occurs naturally in any Bayesian analysis of data from distributions with suitably thick tails. For other distributions outlier rejection behaviour can never occur. These phenomena motivate new definitions of outlier-proneness and outlier-resistance. The definitions and methodology are Bayesian but the conclusions also have meaning for nonBayesians because they are proved for arbitrary prior distributions. Thus, for example, the t distribution is said to be outlier-prone because it is shown that any admissible inference procedure applied to a t sample will effectively ignore extreme outlying observations regardless of prior information. On the other hand, the normal distribution, for example, is said to be outlier-resistant because it never allows outlier rejection, regardless of prior information.","PeriodicalId":17425,"journal":{"name":"Journal of the royal statistical society series b-methodological","volume":"33 1","pages":"358-367"},"PeriodicalIF":0.0000,"publicationDate":"1979-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"168","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the royal statistical society series b-methodological","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.2517-6161.1979.TB01090.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 168

Abstract

SUMMARY Inference is considered for a location parameter given a random sample. Outliers are not explicitly modelled, but rejection of extreme observations occurs naturally in any Bayesian analysis of data from distributions with suitably thick tails. For other distributions outlier rejection behaviour can never occur. These phenomena motivate new definitions of outlier-proneness and outlier-resistance. The definitions and methodology are Bayesian but the conclusions also have meaning for nonBayesians because they are proved for arbitrary prior distributions. Thus, for example, the t distribution is said to be outlier-prone because it is shown that any admissible inference procedure applied to a t sample will effectively ignore extreme outlying observations regardless of prior information. On the other hand, the normal distribution, for example, is said to be outlier-resistant because it never allows outlier rejection, regardless of prior information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯推理中的离群拒绝现象
摘要对给定随机样本的位置参数进行了推理。异常值没有明确地建模,但是在对具有适当厚尾分布的数据进行贝叶斯分析时,拒绝极端观测值是自然发生的。对于其他分布,异常排斥行为永远不会发生。这些现象激发了对离群倾向和离群抵抗的新定义。定义和方法是贝叶斯的,但结论对非贝叶斯也有意义,因为它们是针对任意先验分布证明的。因此,例如,t分布被称为离群倾向,因为它表明,应用于t样本的任何可接受的推理过程将有效地忽略极端的离群观测值,而不管先验信息如何。另一方面,正态分布,例如,被称为抗离群值,因为它从不允许离群值拒绝,不管先验信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proposal of the vote of thanks in discussion of Cule, M., Samworth, R., and Stewart, M.: Maximum likelihood estimation of a multidimensional logconcave density On Assessing goodness of fit of generalized linear models to sparse data Bayes Linear Sufficiency and Systems of Expert Posterior Assessments On the Choice of Smoothing Parameter, Threshold and Truncation in Nonparametric Regression by Non-linear Wavelet Methods Quasi‐Likelihood and Generalizing the Em Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1