Variance stabilization in Poisson image deblurring

Lucio Azzari, A. Foi
{"title":"Variance stabilization in Poisson image deblurring","authors":"Lucio Azzari, A. Foi","doi":"10.1109/ISBI.2017.7950622","DOIUrl":null,"url":null,"abstract":"We consider the restoration of blurred images corrupted by Poisson noise using variance-stabilizing transformations (VST). Although VST are an established tool used extensively for denoising, their adoption in deconvolution problems is problematic because VST are necessarily nonlinear operators, and thus break the linear image-formation model typically adopted in deconvolution. We propose a deblurring framework where the image is 1) deconvolved by a linear regularized inverse filter, 2) transformed by VST into an image which can be treated as corrupted by strong spatially correlated noise with constant variance and known power spectrum, 3) denoised by a filter for additive colored Gaussian noise, 4) returned to the original range via inverse VST. We particularly analyze the stabilization of Poisson variates after linear filtering and characterize the noise power spectrum before and after application of VST. We present an efficient implementation of this original deblurring framework using the BM3D denoising filter, demonstrating state-of-the-art results which are especially appealing in low SNR imaging conditions.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"47 1","pages":"728-731"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

We consider the restoration of blurred images corrupted by Poisson noise using variance-stabilizing transformations (VST). Although VST are an established tool used extensively for denoising, their adoption in deconvolution problems is problematic because VST are necessarily nonlinear operators, and thus break the linear image-formation model typically adopted in deconvolution. We propose a deblurring framework where the image is 1) deconvolved by a linear regularized inverse filter, 2) transformed by VST into an image which can be treated as corrupted by strong spatially correlated noise with constant variance and known power spectrum, 3) denoised by a filter for additive colored Gaussian noise, 4) returned to the original range via inverse VST. We particularly analyze the stabilization of Poisson variates after linear filtering and characterize the noise power spectrum before and after application of VST. We present an efficient implementation of this original deblurring framework using the BM3D denoising filter, demonstrating state-of-the-art results which are especially appealing in low SNR imaging conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
泊松图像去模糊中的方差稳定
我们考虑用方差稳定变换(VST)来恢复被泊松噪声破坏的模糊图像。虽然VST是一种广泛用于去噪的成熟工具,但在反卷积问题中采用VST是有问题的,因为VST必然是非线性算子,从而打破了反卷积中通常采用的线性图像形成模型。我们提出了一种去模糊框架,其中1)通过线性正则化逆滤波器对图像进行反卷积,2)通过VST变换成可以被具有恒定方差和已知功率谱的强空间相关噪声破坏的图像,3)通过加性彩色高斯噪声滤波器去噪,4)通过逆VST返回到原始范围。重点分析了线性滤波后泊松变量的稳定性,并对VST应用前后的噪声功率谱进行了表征。我们使用BM3D去噪滤波器有效地实现了这种原始的去模糊框架,展示了在低信噪比成像条件下特别吸引人的最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of adrenal lesions through spatial Bayesian modeling of GLCM Correction of partial volume effect in 99mTc-TRODAT-1 brain SPECT images using an edge-preserving weighted regularization Two-dimensional speckle tracking using parabolic polynomial expansion with Riesz transform Elastic registration of high-resolution 3D PLI data of the human brain Registration of ultra-high resolution 3D PLI data of human brain sections to their corresponding high-resolution counterpart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1