Convolutions of totally positive distributions with applications to kernel density estimation

Ali Zartash, Elina Robeva
{"title":"Convolutions of totally positive distributions with applications to kernel density estimation","authors":"Ali Zartash, Elina Robeva","doi":"10.2140/astat.2022.13.57","DOIUrl":null,"url":null,"abstract":"In this work we study the estimation of the density of a totally positive random vector. Total positivity of the distribution of a random vector implies a strong form of positive dependence between its coordinates and, in particular, it implies positive association. Since estimating a totally positive density is a non-parametric problem, we take on a (modified) kernel density estimation approach. Our main result is that the sum of scaled standard Gaussian bumps centered at a min-max closed set provably yields a totally positive distribution. Hence, our strategy for producing a totally positive estimator is to form the min-max closure of the set of samples, and output a sum of Gaussian bumps centered at the points in this set. We can frame this sum as a convolution between the uniform distribution on a min-max closed set and a scaled standard Gaussian. We further conjecture that convolving any totally positive density with a standard Gaussian remains totally positive.","PeriodicalId":41066,"journal":{"name":"Journal of Algebraic Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/astat.2022.13.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we study the estimation of the density of a totally positive random vector. Total positivity of the distribution of a random vector implies a strong form of positive dependence between its coordinates and, in particular, it implies positive association. Since estimating a totally positive density is a non-parametric problem, we take on a (modified) kernel density estimation approach. Our main result is that the sum of scaled standard Gaussian bumps centered at a min-max closed set provably yields a totally positive distribution. Hence, our strategy for producing a totally positive estimator is to form the min-max closure of the set of samples, and output a sum of Gaussian bumps centered at the points in this set. We can frame this sum as a convolution between the uniform distribution on a min-max closed set and a scaled standard Gaussian. We further conjecture that convolving any totally positive density with a standard Gaussian remains totally positive.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全正分布的卷积及其在核密度估计中的应用
在这项工作中,我们研究了一个全正随机向量的密度估计。一个随机向量分布的总正性意味着它的坐标之间有很强的正相关性,特别是意味着正关联。由于估计一个完全正的密度是一个非参数问题,我们采用(改进的)核密度估计方法。我们的主要结果是,以最小-最大闭集为中心的标度标准高斯凸点的和可证明地产生一个完全正的分布。因此,我们产生完全正估计量的策略是形成样本集的最小-最大闭包,并输出以该集合中的点为中心的高斯凸起的和。我们可以把这个和看作是最小最大闭集上的均匀分布和缩放后的标准高斯分布之间的卷积。我们进一步推测,卷积任何完全正的密度与标准高斯仍然是完全正的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Algebraic Statistics
Journal of Algebraic Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
0
期刊最新文献
Construct an Empirical Study on the Concept, Modern Portfolio Theory Using Markowitz Model Symmetric Generatic Generations and an Algorithm to Prove Relations Mathematical Formulation of Arithmetic Surface (3, 5) Over Q Symmetric Presentations of Finite Groups Factors Responsible for the Success of Indian Startups: An Empirical Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1