From low to high-and lower-optimal regularity of the SMGTJ equation with Dirichlet and Neumann boundary control, and with point control, via explicit representation formulae

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-01-01 DOI:10.3934/eect.2022007
R. Triggiani, X. Wan
{"title":"From low to high-and lower-optimal regularity of the SMGTJ equation with Dirichlet and Neumann boundary control, and with point control, via explicit representation formulae","authors":"R. Triggiani, X. Wan","doi":"10.3934/eect.2022007","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We consider the linear third order (in time) PDE known as the SMGTJ-equation, defined on a bounded domain, under the action of either Dirichlet or Neumann boundary control <inline-formula><tex-math id=\"M1\">\\begin{document}$ g $\\end{document}</tex-math></inline-formula>. Optimal interior and boundary regularity results were given in [<xref ref-type=\"bibr\" rid=\"b1\">1</xref>], after [<xref ref-type=\"bibr\" rid=\"b41\">41</xref>], when <inline-formula><tex-math id=\"M2\">\\begin{document}$ g \\in L^2(0, T;L^2(\\Gamma)) \\equiv L^2(\\Sigma) $\\end{document}</tex-math></inline-formula>, which, moreover, in the canonical case <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\gamma = 0 $\\end{document}</tex-math></inline-formula>, were expressed by the well-known explicit representation formulae of the wave equation in terms of cosine/sine operators [<xref ref-type=\"bibr\" rid=\"b19\">19</xref>], [<xref ref-type=\"bibr\" rid=\"b17\">17</xref>], [<xref ref-type=\"bibr\" rid=\"b24\">24</xref>,Vol Ⅱ]. The interior or boundary regularity theory is however the same, whether <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\gamma = 0 $\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\"M5\">\\begin{document}$ 0 \\neq \\gamma \\in L^{\\infty}(\\Omega) $\\end{document}</tex-math></inline-formula>, since <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\gamma \\neq 0 $\\end{document}</tex-math></inline-formula> is responsible only for lower order terms. Here we exploit such cosine operator based-explicit representation formulae to provide optimal interior and boundary regularity results with <inline-formula><tex-math id=\"M7\">\\begin{document}$ g $\\end{document}</tex-math></inline-formula> \"smoother\" than <inline-formula><tex-math id=\"M8\">\\begin{document}$ L^2(\\Sigma) $\\end{document}</tex-math></inline-formula>, qualitatively by one unit, two units, etc. in the Dirichlet boundary case. To this end, we invoke the corresponding results for wave equations, as in [<xref ref-type=\"bibr\" rid=\"b17\">17</xref>]. Similarly for the Neumann boundary case, by invoking the corresponding results for the wave equation as in [<xref ref-type=\"bibr\" rid=\"b22\">22</xref>], [<xref ref-type=\"bibr\" rid=\"b23\">23</xref>], [<xref ref-type=\"bibr\" rid=\"b37\">37</xref>] for control smoother than <inline-formula><tex-math id=\"M9\">\\begin{document}$ L^2(0, T;L^2(\\Gamma)) $\\end{document}</tex-math></inline-formula>, and [<xref ref-type=\"bibr\" rid=\"b44\">44</xref>] for control less regular in space than <inline-formula><tex-math id=\"M10\">\\begin{document}$ L^2(\\Gamma) $\\end{document}</tex-math></inline-formula>. In addition, we provide optimal interior and boundary regularity results when the SMGTJ equation is subject to interior point control, by invoking the corresponding wave equations results [<xref ref-type=\"bibr\" rid=\"b42\">42</xref>], [<xref ref-type=\"bibr\" rid=\"b24\">24</xref>,Section 9.8.2].</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2022007","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the linear third order (in time) PDE known as the SMGTJ-equation, defined on a bounded domain, under the action of either Dirichlet or Neumann boundary control \begin{document}$ g $\end{document}. Optimal interior and boundary regularity results were given in [1], after [41], when \begin{document}$ g \in L^2(0, T;L^2(\Gamma)) \equiv L^2(\Sigma) $\end{document}, which, moreover, in the canonical case \begin{document}$ \gamma = 0 $\end{document}, were expressed by the well-known explicit representation formulae of the wave equation in terms of cosine/sine operators [19], [17], [24,Vol Ⅱ]. The interior or boundary regularity theory is however the same, whether \begin{document}$ \gamma = 0 $\end{document} or \begin{document}$ 0 \neq \gamma \in L^{\infty}(\Omega) $\end{document}, since \begin{document}$ \gamma \neq 0 $\end{document} is responsible only for lower order terms. Here we exploit such cosine operator based-explicit representation formulae to provide optimal interior and boundary regularity results with \begin{document}$ g $\end{document} "smoother" than \begin{document}$ L^2(\Sigma) $\end{document}, qualitatively by one unit, two units, etc. in the Dirichlet boundary case. To this end, we invoke the corresponding results for wave equations, as in [17]. Similarly for the Neumann boundary case, by invoking the corresponding results for the wave equation as in [22], [23], [37] for control smoother than \begin{document}$ L^2(0, T;L^2(\Gamma)) $\end{document}, and [44] for control less regular in space than \begin{document}$ L^2(\Gamma) $\end{document}. In addition, we provide optimal interior and boundary regularity results when the SMGTJ equation is subject to interior point control, by invoking the corresponding wave equations results [42], [24,Section 9.8.2].

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由低到高的SMGTJ方程的最优正则性与Dirichlet和Neumann边界控制,并与点控制,通过显式表示公式
We consider the linear third order (in time) PDE known as the SMGTJ-equation, defined on a bounded domain, under the action of either Dirichlet or Neumann boundary control \begin{document}$ g $\end{document}. Optimal interior and boundary regularity results were given in [1], after [41], when \begin{document}$ g \in L^2(0, T;L^2(\Gamma)) \equiv L^2(\Sigma) $\end{document}, which, moreover, in the canonical case \begin{document}$ \gamma = 0 $\end{document}, were expressed by the well-known explicit representation formulae of the wave equation in terms of cosine/sine operators [19], [17], [24,Vol Ⅱ]. The interior or boundary regularity theory is however the same, whether \begin{document}$ \gamma = 0 $\end{document} or \begin{document}$ 0 \neq \gamma \in L^{\infty}(\Omega) $\end{document}, since \begin{document}$ \gamma \neq 0 $\end{document} is responsible only for lower order terms. Here we exploit such cosine operator based-explicit representation formulae to provide optimal interior and boundary regularity results with \begin{document}$ g $\end{document} "smoother" than \begin{document}$ L^2(\Sigma) $\end{document}, qualitatively by one unit, two units, etc. in the Dirichlet boundary case. To this end, we invoke the corresponding results for wave equations, as in [17]. Similarly for the Neumann boundary case, by invoking the corresponding results for the wave equation as in [22], [23], [37] for control smoother than \begin{document}$ L^2(0, T;L^2(\Gamma)) $\end{document}, and [44] for control less regular in space than \begin{document}$ L^2(\Gamma) $\end{document}. In addition, we provide optimal interior and boundary regularity results when the SMGTJ equation is subject to interior point control, by invoking the corresponding wave equations results [42], [24,Section 9.8.2].
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1