Adaptive modelling of biological time series for artifact detection

M. Varanini, A. Taddei, R. Balocchi, M. Macerata, F. Conforti, M. Emdin, C. Carpeggiani, C. Marchesi
{"title":"Adaptive modelling of biological time series for artifact detection","authors":"M. Varanini, A. Taddei, R. Balocchi, M. Macerata, F. Conforti, M. Emdin, C. Carpeggiani, C. Marchesi","doi":"10.1109/CIC.1993.378307","DOIUrl":null,"url":null,"abstract":"The authors propose a method for artifact detection based on linear modelling of biological time series. An artifact, coming from a different \"source\", generally does not fit in the model and can be detected. Biological time series are not stationary, so that adaptive filtering is used for model estimation. Real time constraints warrant the use of predictive models only past input values are used to predict the current sample values. A set of thresholds or the prediction errors is used to detect artifacts. The authors model each time series by means of an adaptive prediction filter and, when a priori knowledge or the relation between two measurements, is available, they model this specific cross-channel relation with an adaptive filter. They applied this method to sequences of cardiovascular measurements from ICU and from Holter monitoring. The results obtained are fully satisfactory.<<ETX>>","PeriodicalId":20445,"journal":{"name":"Proceedings of Computers in Cardiology Conference","volume":"74 1","pages":"695-698"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Computers in Cardiology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.1993.378307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The authors propose a method for artifact detection based on linear modelling of biological time series. An artifact, coming from a different "source", generally does not fit in the model and can be detected. Biological time series are not stationary, so that adaptive filtering is used for model estimation. Real time constraints warrant the use of predictive models only past input values are used to predict the current sample values. A set of thresholds or the prediction errors is used to detect artifacts. The authors model each time series by means of an adaptive prediction filter and, when a priori knowledge or the relation between two measurements, is available, they model this specific cross-channel relation with an adaptive filter. They applied this method to sequences of cardiovascular measurements from ICU and from Holter monitoring. The results obtained are fully satisfactory.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于伪影检测的生物时间序列自适应建模
提出了一种基于生物时间序列线性建模的伪影检测方法。来自不同“来源”的工件通常不适合模型,并且可以被检测到。生物时间序列是非平稳的,因此采用自适应滤波进行模型估计。实时约束保证了预测模型的使用,只有过去的输入值被用来预测当前的样本值。使用一组阈值或预测误差来检测工件。作者通过自适应预测滤波器对每个时间序列进行建模,当先验知识或两个测量之间的关系可用时,他们用自适应滤波器对这种特定的跨通道关系进行建模。他们将这种方法应用于ICU和动态心电图监测的心血管测量序列。所得结果是完全令人满意的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 528 channel system for the acquisition and display of defibrillation and electrocardiographic potentials Computers: the heart of screening Signal averaging enhancement by jitter deconvolution Numerical simulation of the flow in model skeletal muscle ventricles Transmembrane potential changes during stimulation in a bidomain model of the myocardium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1