{"title":"An Improved Genetic Algorithm for Automated Convolutional Neural Network Design","authors":"Rahul Dubey, Jitendra Agrawal","doi":"10.32604/iasc.2022.020975","DOIUrl":null,"url":null,"abstract":"Extracting the features from an image is a cumbersome task. Initially, this task was performed by domain experts through a process known as handcrafted feature design. A deep embedding technique known as convolutional neural networks (CNNs) later solved this problem by introducing the feature learning concept, through which the CNN is directly provided with images. This CNN then learns the features of the image, which are subsequently given as input to the further layers for an intended task like classification. CNNs have demonstrated astonishing performance in several practicable applications in the last few years. Nevertheless, the pursuance of CNNs primarily depends upon their architecture, which is handcrafted by domain expertise and type of investigated problem. On the other hand, for researchers who do not have proficiency in using CNNs, it has been very difficult to explore this topic in their problem statements. In this paper, we have come up with a rank and gradient descent-based optimized genetic algorithm to automatically find the architecture design of CNNs that is vigorously competent in exploring the best CNN architecture for maneuvering the tasks of image classification. In the proposed algorithm, there is no requirement for handcrafted preand post-processing, which implies that the algorithm is fully mechanized. The validation of the proposed algorithm on conventional benchmarked datasets has been done by comparing the run time of a graphics processing unit (GPU) throughout the training process and assessing the accuracy of various measures. The experimental results show that the proposed algorithm accomplishes better and more persistent ‘classification accuracy’ than the original genetic algorithm on the CIFAR datasets by using fifty percent less intensive computing resources for training the individual CNN and the entire population.","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"72 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Automation and Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32604/iasc.2022.020975","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2
Abstract
Extracting the features from an image is a cumbersome task. Initially, this task was performed by domain experts through a process known as handcrafted feature design. A deep embedding technique known as convolutional neural networks (CNNs) later solved this problem by introducing the feature learning concept, through which the CNN is directly provided with images. This CNN then learns the features of the image, which are subsequently given as input to the further layers for an intended task like classification. CNNs have demonstrated astonishing performance in several practicable applications in the last few years. Nevertheless, the pursuance of CNNs primarily depends upon their architecture, which is handcrafted by domain expertise and type of investigated problem. On the other hand, for researchers who do not have proficiency in using CNNs, it has been very difficult to explore this topic in their problem statements. In this paper, we have come up with a rank and gradient descent-based optimized genetic algorithm to automatically find the architecture design of CNNs that is vigorously competent in exploring the best CNN architecture for maneuvering the tasks of image classification. In the proposed algorithm, there is no requirement for handcrafted preand post-processing, which implies that the algorithm is fully mechanized. The validation of the proposed algorithm on conventional benchmarked datasets has been done by comparing the run time of a graphics processing unit (GPU) throughout the training process and assessing the accuracy of various measures. The experimental results show that the proposed algorithm accomplishes better and more persistent ‘classification accuracy’ than the original genetic algorithm on the CIFAR datasets by using fifty percent less intensive computing resources for training the individual CNN and the entire population.
期刊介绍:
An International Journal seeks to provide a common forum for the dissemination of accurate results about the world of intelligent automation, artificial intelligence, computer science, control, intelligent data science, modeling and systems engineering. It is intended that the articles published in the journal will encompass both the short and the long term effects of soft computing and other related fields such as robotics, control, computer, vision, speech recognition, pattern recognition, data mining, big data, data analytics, machine intelligence, cyber security and deep learning. It further hopes it will address the existing and emerging relationships between automation, systems engineering, system of systems engineering and soft computing. The journal will publish original and survey papers on artificial intelligence, intelligent automation and computer engineering with an emphasis on current and potential applications of soft computing. It will have a broad interest in all engineering disciplines, computer science, and related technological fields such as medicine, biology operations research, technology management, agriculture and information technology.