Blind channel equalization of encoded data over galois fields

D. Fantinato, A. Neves, D. G. Silva, R. Attux
{"title":"Blind channel equalization of encoded data over galois fields","authors":"D. Fantinato, A. Neves, D. G. Silva, R. Attux","doi":"10.1109/MLSP.2017.8168135","DOIUrl":null,"url":null,"abstract":"In communication systems, the study of elements and structures defined over Galois fields are generally limited to data coding. However, in this work, a novel perspective that combines data coding and channel equalization is considered to compose a simplified communication system over the field. Besides the coding advantages, this framework is able to restore distortions or malfunctioning processes, and can be potentially applied in network coding models. Interestingly, the operation of the equalizer is possible from a blind standpoint through the exploration of the redundant information introduced by the encoder. More specifically, we define a blind equalization criterion based on the matching of probability mass functions (PMFs) via the Kullback-Leibler divergence. Simulations involving the main aspects of the equalizer and the criterion are performed, including the use of a genetic algorithm to aid the search for the solution, with promising results.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"158 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In communication systems, the study of elements and structures defined over Galois fields are generally limited to data coding. However, in this work, a novel perspective that combines data coding and channel equalization is considered to compose a simplified communication system over the field. Besides the coding advantages, this framework is able to restore distortions or malfunctioning processes, and can be potentially applied in network coding models. Interestingly, the operation of the equalizer is possible from a blind standpoint through the exploration of the redundant information introduced by the encoder. More specifically, we define a blind equalization criterion based on the matching of probability mass functions (PMFs) via the Kullback-Leibler divergence. Simulations involving the main aspects of the equalizer and the criterion are performed, including the use of a genetic algorithm to aid the search for the solution, with promising results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
伽罗瓦域上编码数据的盲信道均衡
在通信系统中,对伽罗瓦域上定义的元素和结构的研究通常局限于数据编码。然而,在这项工作中,结合数据编码和信道均衡的新观点被认为是组成一个简化的通信系统。除了编码优势之外,该框架还能够恢复扭曲或故障过程,并且可以潜在地应用于网络编码模型。有趣的是,通过探索编码器引入的冗余信息,均衡器的操作可以从盲的角度来看。更具体地说,我们通过Kullback-Leibler散度定义了一个基于概率质量函数(pmf)匹配的盲均衡准则。进行了涉及均衡器和判据主要方面的模拟,包括使用遗传算法来帮助寻找解决方案,结果很有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classical quadrature rules via Gaussian processes Does speech enhancement work with end-to-end ASR objectives?: Experimental analysis of multichannel end-to-end ASR Differential mutual information forward search for multi-kernel discriminant-component selection with an application to privacy-preserving classification Partitioning in signal processing using the object migration automaton and the pursuit paradigm Inferring room semantics using acoustic monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1