{"title":"RECOGNIZING TRANSPORTATION MODE ON MOBILE PHONE USING PROBABILITY FUSION OF EXTREME LEARNING MACHINES","authors":"Shuangquan Wang, Yiqiang Chen, Zhenyu Chen","doi":"10.1142/S0218488513400126","DOIUrl":null,"url":null,"abstract":"As one important clue to understand people's behavior and life pattern, transportation mode (such as walking, bicycling, taking bus, driving, taking light-rail or subway, etc.) information has already widely used in mobile recommendation, route planning, social networking and health caring. This paper proposes a transportation mode recognition method using probability fusion of extreme learning machines (ELMs). Two ELM classification models are trained to recognize accelerometer data and Global Positioning System (GPS) data, respectively. Fuzzy output vectors of these two ELMs are transformed into probability vectors and fused to determine the final result. Experimental results verify that the proposed method is effective and can obtain higher recognition accuracy than traditional fusion methods.","PeriodicalId":50283,"journal":{"name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","volume":"23 1","pages":"13-22"},"PeriodicalIF":1.0000,"publicationDate":"2013-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0218488513400126","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 14
Abstract
As one important clue to understand people's behavior and life pattern, transportation mode (such as walking, bicycling, taking bus, driving, taking light-rail or subway, etc.) information has already widely used in mobile recommendation, route planning, social networking and health caring. This paper proposes a transportation mode recognition method using probability fusion of extreme learning machines (ELMs). Two ELM classification models are trained to recognize accelerometer data and Global Positioning System (GPS) data, respectively. Fuzzy output vectors of these two ELMs are transformed into probability vectors and fused to determine the final result. Experimental results verify that the proposed method is effective and can obtain higher recognition accuracy than traditional fusion methods.
期刊介绍:
The International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems is a forum for research on various methodologies for the management of imprecise, vague, uncertain or incomplete information. The aim of the journal is to promote theoretical or methodological works dealing with all kinds of methods to represent and manipulate imperfectly described pieces of knowledge, excluding results on pure mathematics or simple applications of existing theoretical results. It is published bimonthly, with worldwide distribution to researchers, engineers, decision-makers, and educators.