Le Yang, Zhihong Yang, Xian Wei Chua, Vincent Kim, Yaxiao Lian, Baodan Zhao, B. Ehrler, D. Di, R. Friend
{"title":"Highly efficient dual-dopant enhanced emission OLEDs","authors":"Le Yang, Zhihong Yang, Xian Wei Chua, Vincent Kim, Yaxiao Lian, Baodan Zhao, B. Ehrler, D. Di, R. Friend","doi":"10.1117/12.2595396","DOIUrl":null,"url":null,"abstract":"The efficiency of OLEDs is fundamentally determined by the spin of excited state electrons. We have previously shown, using a new class of emissive molecules, carbene-metal-amides (CMA), an unusual emission pathway based on spin-state inter-conversion - intramolecular rotation induces a shift in the relative energies of the first excited singlet and triplet states, leading to extremely efficient singlet-triplet state interconversion and photoemission. In our recent work, we report solution-processed dual-dopant polymer LEDs, in which highly efficient electroluminescence occurs via an intermolecular energy transfer from CMAs to a fluorescent emitter. With electroluminescence from the simple fluorophore, we obtained record EQEs of >20% in these devices. Photophysical measurements indicate that ultrafast inter-fluorophore energy transfer occurs with near-unity efficiency. They preserve the relative colour purity of simple fluorophores, potential for energy-efficient printable electronics.","PeriodicalId":19672,"journal":{"name":"Organic and Hybrid Light Emitting Materials and Devices XXV","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic and Hybrid Light Emitting Materials and Devices XXV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2595396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The efficiency of OLEDs is fundamentally determined by the spin of excited state electrons. We have previously shown, using a new class of emissive molecules, carbene-metal-amides (CMA), an unusual emission pathway based on spin-state inter-conversion - intramolecular rotation induces a shift in the relative energies of the first excited singlet and triplet states, leading to extremely efficient singlet-triplet state interconversion and photoemission. In our recent work, we report solution-processed dual-dopant polymer LEDs, in which highly efficient electroluminescence occurs via an intermolecular energy transfer from CMAs to a fluorescent emitter. With electroluminescence from the simple fluorophore, we obtained record EQEs of >20% in these devices. Photophysical measurements indicate that ultrafast inter-fluorophore energy transfer occurs with near-unity efficiency. They preserve the relative colour purity of simple fluorophores, potential for energy-efficient printable electronics.