K. Lwin, N. Funabiki, Sumon Kumar Debnath, Kwenga Ismael Munene, R. Sudibyo, M. Kuribayashi, W. Kao
{"title":"Enhancements of minimax access-point setup optimisation approach for IEEE 802.11 WLAN","authors":"K. Lwin, N. Funabiki, Sumon Kumar Debnath, Kwenga Ismael Munene, R. Sudibyo, M. Kuribayashi, W. Kao","doi":"10.1504/IJSSC.2019.100017","DOIUrl":null,"url":null,"abstract":"As a flexible and cost-efficient internet access network, the IEEE 802.11 wireless local-area network (WLAN) has been broadly deployed around the world. Previously, to improve the IEEE 802.11n WLAN performance, we proposed the four-step minimax access-point (AP) setup optimisation approach: 1) link throughputs between the AP and hosts in the network field are measured manually; 2) the throughput estimation model is tuned using the measurement results; 3) the bottleneck host suffering the least throughput is estimated using this model; 4) the AP setup is optimised to maximise the throughput of the bottleneck host. Unfortunately, this approach has drawbacks: 1) a lot of manual throughput measurements are necessary to tune the model; 2) the shift of the AP location is not considered; 3) IEEE 802.11ac devices at 5 GHz are not evaluated, although they can offer faster transmissions. In this paper, we present the three enhancements: 1) the number of measurement points is reduced while keeping the model accuracy; 2) the coordinate of the AP setup is newly adopted as the optimisation parameter; 3) the AP device with IEEE 802.11ac at 5 GHz is considered with slight modifications. The effectiveness is confirmed by extensive experiments in three network fields.","PeriodicalId":43931,"journal":{"name":"International Journal of Space-Based and Situated Computing","volume":"75 1","pages":"47-59"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Space-Based and Situated Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSSC.2019.100017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
As a flexible and cost-efficient internet access network, the IEEE 802.11 wireless local-area network (WLAN) has been broadly deployed around the world. Previously, to improve the IEEE 802.11n WLAN performance, we proposed the four-step minimax access-point (AP) setup optimisation approach: 1) link throughputs between the AP and hosts in the network field are measured manually; 2) the throughput estimation model is tuned using the measurement results; 3) the bottleneck host suffering the least throughput is estimated using this model; 4) the AP setup is optimised to maximise the throughput of the bottleneck host. Unfortunately, this approach has drawbacks: 1) a lot of manual throughput measurements are necessary to tune the model; 2) the shift of the AP location is not considered; 3) IEEE 802.11ac devices at 5 GHz are not evaluated, although they can offer faster transmissions. In this paper, we present the three enhancements: 1) the number of measurement points is reduced while keeping the model accuracy; 2) the coordinate of the AP setup is newly adopted as the optimisation parameter; 3) the AP device with IEEE 802.11ac at 5 GHz is considered with slight modifications. The effectiveness is confirmed by extensive experiments in three network fields.