Modification of Ground-Motion Models to Estimate Orientation-Dependent Horizontal Response Spectra in Strike-Slip Earthquakes

IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Bulletin of the Seismological Society of America Pub Date : 2023-09-08 DOI:10.1785/0120230084
A. Poulos, Eduardo Miranda
{"title":"Modification of Ground-Motion Models to Estimate Orientation-Dependent Horizontal Response Spectra in Strike-Slip Earthquakes","authors":"A. Poulos, Eduardo Miranda","doi":"10.1785/0120230084","DOIUrl":null,"url":null,"abstract":"\n A model to estimate the 5% damped response spectra of horizontal components at specific orientations is presented. The model, which explicitly accounts for directionality, is based on prior research by the authors that identified that the orientation of maximum horizontal spectral response at a site in strike-slip earthquakes tends to occur at or close to the transverse orientation with respect to the epicenter. Using a database of 1962 ground motions recorded in shallow crustal earthquakes with strike-slip faulting, it is shown that there is a significantly larger probability of exceeding orientation-independent RotD50 intensities in the transverse orientation than in the radial orientation. Furthermore, the results indicate that, on average, spectral responses in the transverse orientation are significantly larger than those in the radial orientation and that these differences become more significant as the period of the oscillator increases. For example, spectral responses in the transverse orientation are, on average, 12% larger than those in the radial orientation for 1 s oscillators and 78% larger for 10 s oscillators. A period- and orientation-dependent model is developed and calibrated to estimate 5% damped response spectral ordinates at specific orientations by modifying orientation-independent RotD50 intensities. The proposed orientation-dependent model can explicitly account for directionality by modifying the means and standard deviations of any ground-motion model that estimates RotD50 response spectral ordinates for strike-slip earthquakes to obtain probability distributions of response spectral ordinates but now at specific horizontal orientations.","PeriodicalId":9444,"journal":{"name":"Bulletin of the Seismological Society of America","volume":"21 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Seismological Society of America","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1785/0120230084","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

A model to estimate the 5% damped response spectra of horizontal components at specific orientations is presented. The model, which explicitly accounts for directionality, is based on prior research by the authors that identified that the orientation of maximum horizontal spectral response at a site in strike-slip earthquakes tends to occur at or close to the transverse orientation with respect to the epicenter. Using a database of 1962 ground motions recorded in shallow crustal earthquakes with strike-slip faulting, it is shown that there is a significantly larger probability of exceeding orientation-independent RotD50 intensities in the transverse orientation than in the radial orientation. Furthermore, the results indicate that, on average, spectral responses in the transverse orientation are significantly larger than those in the radial orientation and that these differences become more significant as the period of the oscillator increases. For example, spectral responses in the transverse orientation are, on average, 12% larger than those in the radial orientation for 1 s oscillators and 78% larger for 10 s oscillators. A period- and orientation-dependent model is developed and calibrated to estimate 5% damped response spectral ordinates at specific orientations by modifying orientation-independent RotD50 intensities. The proposed orientation-dependent model can explicitly account for directionality by modifying the means and standard deviations of any ground-motion model that estimates RotD50 response spectral ordinates for strike-slip earthquakes to obtain probability distributions of response spectral ordinates but now at specific horizontal orientations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
修正地震动模型估算走滑地震方向相关水平反应谱
提出了在特定方向上估计水平分量5%阻尼响应谱的模型。该模型明确地说明了方向性,是基于作者先前的研究,该研究发现,在走滑地震中,一个地点的最大水平谱反应的方向往往发生在震中的横向方向上或接近横向方向。利用1962年带走滑断裂的浅层地壳地震记录的地震动数据库,表明横向超过与方向无关的RotD50强度的概率明显大于径向。此外,结果表明,平均而言,横向方向的频谱响应明显大于径向方向的频谱响应,并且随着振荡器周期的增加,这种差异变得更加显著。例如,1 s振子的横向谱响应比径向谱响应大12%,10 s振子的横向谱响应比径向谱响应大78%。开发并校准了一个依赖于周期和方向的模型,通过修改与方向无关的RotD50强度来估计特定方向上5%阻尼的响应谱坐标。所提出的方向依赖模型可以通过修改任何估计走滑地震的RotD50响应谱坐标的地面运动模型的均值和标准差来明确地解释方向性,以获得响应谱坐标的概率分布,但现在是在特定的水平方向上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bulletin of the Seismological Society of America
Bulletin of the Seismological Society of America 地学-地球化学与地球物理
CiteScore
5.80
自引率
13.30%
发文量
140
审稿时长
3 months
期刊介绍: The Bulletin of the Seismological Society of America, commonly referred to as BSSA, (ISSN 0037-1106) is the premier journal of advanced research in earthquake seismology and related disciplines. It first appeared in 1911 and became a bimonthly in 1963. Each issue is composed of scientific papers on the various aspects of seismology, including investigation of specific earthquakes, theoretical and observational studies of seismic waves, inverse methods for determining the structure of the Earth or the dynamics of the earthquake source, seismometry, earthquake hazard and risk estimation, seismotectonics, and earthquake engineering. Special issues focus on important earthquakes or rapidly changing topics in seismology. BSSA is published by the Seismological Society of America.
期刊最新文献
Broadband Ground‐Motion Synthesis via Generative Adversarial Neural Operators: Development and Validation Site‐Specific Ground‐Motion Waveform Generation Using a Conditional Generative Adversarial Network and Generalized Inversion Technique Ground‐Motion Model for Small‐to‐Moderate Potentially Induced Earthquakes Using an Ensemble Machine Learning Approach for CENA Stochastic Simulation of Pulse‐Like Ground Motions Using Wavelet Packets Imaging Upper‐Mantle Anisotropy with Transdimensional Bayesian Monte Carlo Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1