{"title":"Modification of Ground-Motion Models to Estimate Orientation-Dependent Horizontal Response Spectra in Strike-Slip Earthquakes","authors":"A. Poulos, Eduardo Miranda","doi":"10.1785/0120230084","DOIUrl":null,"url":null,"abstract":"\n A model to estimate the 5% damped response spectra of horizontal components at specific orientations is presented. The model, which explicitly accounts for directionality, is based on prior research by the authors that identified that the orientation of maximum horizontal spectral response at a site in strike-slip earthquakes tends to occur at or close to the transverse orientation with respect to the epicenter. Using a database of 1962 ground motions recorded in shallow crustal earthquakes with strike-slip faulting, it is shown that there is a significantly larger probability of exceeding orientation-independent RotD50 intensities in the transverse orientation than in the radial orientation. Furthermore, the results indicate that, on average, spectral responses in the transverse orientation are significantly larger than those in the radial orientation and that these differences become more significant as the period of the oscillator increases. For example, spectral responses in the transverse orientation are, on average, 12% larger than those in the radial orientation for 1 s oscillators and 78% larger for 10 s oscillators. A period- and orientation-dependent model is developed and calibrated to estimate 5% damped response spectral ordinates at specific orientations by modifying orientation-independent RotD50 intensities. The proposed orientation-dependent model can explicitly account for directionality by modifying the means and standard deviations of any ground-motion model that estimates RotD50 response spectral ordinates for strike-slip earthquakes to obtain probability distributions of response spectral ordinates but now at specific horizontal orientations.","PeriodicalId":9444,"journal":{"name":"Bulletin of the Seismological Society of America","volume":"21 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Seismological Society of America","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1785/0120230084","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
A model to estimate the 5% damped response spectra of horizontal components at specific orientations is presented. The model, which explicitly accounts for directionality, is based on prior research by the authors that identified that the orientation of maximum horizontal spectral response at a site in strike-slip earthquakes tends to occur at or close to the transverse orientation with respect to the epicenter. Using a database of 1962 ground motions recorded in shallow crustal earthquakes with strike-slip faulting, it is shown that there is a significantly larger probability of exceeding orientation-independent RotD50 intensities in the transverse orientation than in the radial orientation. Furthermore, the results indicate that, on average, spectral responses in the transverse orientation are significantly larger than those in the radial orientation and that these differences become more significant as the period of the oscillator increases. For example, spectral responses in the transverse orientation are, on average, 12% larger than those in the radial orientation for 1 s oscillators and 78% larger for 10 s oscillators. A period- and orientation-dependent model is developed and calibrated to estimate 5% damped response spectral ordinates at specific orientations by modifying orientation-independent RotD50 intensities. The proposed orientation-dependent model can explicitly account for directionality by modifying the means and standard deviations of any ground-motion model that estimates RotD50 response spectral ordinates for strike-slip earthquakes to obtain probability distributions of response spectral ordinates but now at specific horizontal orientations.
期刊介绍:
The Bulletin of the Seismological Society of America, commonly referred to as BSSA, (ISSN 0037-1106) is the premier journal of advanced research in earthquake seismology and related disciplines. It first appeared in 1911 and became a bimonthly in 1963. Each issue is composed of scientific papers on the various aspects of seismology, including investigation of specific earthquakes, theoretical and observational studies of seismic waves, inverse methods for determining the structure of the Earth or the dynamics of the earthquake source, seismometry, earthquake hazard and risk estimation, seismotectonics, and earthquake engineering. Special issues focus on important earthquakes or rapidly changing topics in seismology. BSSA is published by the Seismological Society of America.