Local Measures Distribution for the Estimation of the Elongation Ratio of the Typical Grain in Homogeneous Boolean Models

IF 0.8 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Image Analysis & Stereology Pub Date : 2021-07-09 DOI:10.5566/IAS.2554
T. Eremina, J. Debayle, F. Gruy, J. Pinoli
{"title":"Local Measures Distribution for the Estimation of the Elongation Ratio of the Typical Grain in Homogeneous Boolean Models","authors":"T. Eremina, J. Debayle, F. Gruy, J. Pinoli","doi":"10.5566/IAS.2554","DOIUrl":null,"url":null,"abstract":"We introduce a particular localization of the Minkowski functionals to characterize and discriminate different random spatial structures. The aim of this paper is to present a method estimating the typical grain elongation ratio in a homogeneous Boolean model. The use of this method is demonstrated on a range of Boolean models of rectangles featuring fixed and random elongation ratio. An optimization algorithm is performed to determine the elongation ratio which maximize the likelihood function of the probability density associated with the local perimeter measure. Therefore, the elongation ratio of the typical grain can be deduced.","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"49 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/IAS.2554","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce a particular localization of the Minkowski functionals to characterize and discriminate different random spatial structures. The aim of this paper is to present a method estimating the typical grain elongation ratio in a homogeneous Boolean model. The use of this method is demonstrated on a range of Boolean models of rectangles featuring fixed and random elongation ratio. An optimization algorithm is performed to determine the elongation ratio which maximize the likelihood function of the probability density associated with the local perimeter measure. Therefore, the elongation ratio of the typical grain can be deduced.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
齐次布尔模型中典型晶粒伸长率估计的局部测度分布
我们引入了闵可夫斯基泛函的特定定位来表征和区分不同的随机空间结构。本文的目的是提出一种在齐次布尔模型中估计典型晶粒伸长率的方法。在一系列具有固定和随机伸长比的矩形布尔模型上演示了该方法的使用。采用优化算法确定了使与局部周长度量相关的概率密度的似然函数最大化的延伸率。由此可以推导出典型晶粒的延伸率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Image Analysis & Stereology
Image Analysis & Stereology MATERIALS SCIENCE, MULTIDISCIPLINARY-MATHEMATICS, APPLIED
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.
期刊最新文献
PU-NET DEEP LEARNING ARCHITECTURE FOR GLIOMAS BRAIN TUMOUR SEGMENTATION IN MAGNETIC RESONANCE IMAGES Sample-balanced and IoU-guided anchor-free visual tracking Existence and approximation of densities of chord length- and cross section area distributions IMPROVEMENT PROCEDURE FOR IMAGE SEGMENTATION OF FRUITS AND VEGETABLES BASED ON THE OTSU METHOD. A Completed Multiply Threshold Encoding Pattern for Texture Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1